
Research Memorandum No. 1006 September 13, 2006

A bridge between boosting and a kernel machine

Masanori KAWAKITA
Shiro IKEDA

and

Shinto EGUCHI

The Institute of

Statistical Mathematics

4-6-7 Minami-Azabu, Minato-ku,

Tokyo, 106-8569, Japan

A bridge between boosting and a kernel machine

Masanori Kawakita kawakita@ism.ac.jp
Shiro Ikeda shiro@ism.ac.jp

Shinto Eguchi eguchi@ism.ac.jp

Institute of Statistical Mathematics

September 13, 2006

Abstract

In this paper, boosting methods are studied from a viewpoint of kernel
machines. This natural connection has already been revealed by defining a
kernel function associated with the set of weak learners, which we call the
WL kernel (Weak Learner kernel). We review this connection with respect
to a kernel exponential family, and propose two important extensions of
boosting methods for classification problems. First proposal is a new
simple regularized boosting, which is confirmed to be valid through some
experiments on real data. The other is a new simple kernel function from
the investigation of the RKHS of decision stumps, which is one of the most
widely-used weak learners. Several experiments confirm the efficiency and
the validity of the proposed algorithm with the new kernel function.

1 Introduction

Both boosting and kernel methods provide attractive statistical classification
tools. Boosting methods (Breiman, 1998; Freund and Schapire, 1997; Friedman
et al., 2000) generally construct an accurate classifier by combining many weak
learners, while the kernel methods Schölkopf and Smola (2001) map the inputs
to a high dimensional feature space. As was pointed out in Rätsch et al. (2000),
their natural connection becomes evident by defining a kernel function (we call
the WL kernel) associated with the set of weak learners whose reproducing
kernel Hilbert space (RKHS) is equal to the set of all possible discriminant
functions of boosting.

In this paper, we study boosting methods from a viewpoint of the kernel
exponential family (Zhu and Hastie, 2005; Canu and Smola, 2006). This view-
point enables boosting to enjoy several results of the kernel methods. First, we
demonstrate how the complexity of boosting discriminant function changes by
showing the Gram matrices. Here, we employed the decision stumps, which are
one of the most widely-used weak learners. Although the WL kernel works fine,

1

the use of the WL kernel requires much computational cost when the number
of weak learners is large. To overcome this problem, we derive a new simple
kernel function associated with decision stumps. The proposed kernel, referred
to as a decision stump kernel, requires much less computational cost and has
no intractable parameters. Secondly, we propose a simple regularized boost-
ing algorithm. Different from several proposed regularized boosting algorithms
(Rätsch et al., 1999; Sun et al., 2004; Rätsch et al., 2001), where regularizers are
based on the weights in the boosting algorithm or on the soft margin concept,
our proposal is to use the inner product defined in the RKHS induced by the
WL kernel. We also give the upperbound of its generalization error. Several
experiments on real data sets confirm the validity of the proposed algorithm
with the WL kernel, and show the decision stump kernel also works fine.

The paper is organized as follows: Section 2 gives a brief review the boosting
algorithm. In Section 3, we connect boosting to a kernel machine by introduc-
ing the WL kernel. We also derive decision stump kernel and a new regularized
boosting algorithm. Section 4 shows experimental results, and section 5 con-
cludes the paper with discussions.

2 Review of boosting algorithm

In this section, we briefly summarize AdaBoost (Freund and Schapire, 1997)
with the geometrical understanding (Lebanon and Lafferty, 2002). In AdaBoost,
it is assumed that we have only inaccurate classifiers referred to as weak learn-
ers, and AdaBoost linearly combines weak learners to construct an accurate
classifier.

We consider the following binary classification problem. Let X ⊂ <M be
a feature space and Y = {−1, 1} be a binary label set. Let further (X, Y) ∈
(X ,Y) be a pair of random variables generated from the joint distribution of
(X,Y) denoted by p(x, y) = q(x)p(y |x) where q(x) denotes the underlying
distribution of X and p(y |x) is the underlying distribution of Y conditioned on
X = x. The extended Kullback-Leibler (KL) divergence (Lebanon and Lafferty,
2002) between any nonnegative measure µ(y |x) and ν(y |x) (not restricted to
probability density functions) is defined as

D(µ, ν) =
∫

X
q(x)

∑

y∈Y

{ν(y |x) − µ(y |x) − µ(y |x)(log(ν(y |x)) − log(µ(y |x)))} dx.

(1)
Let C be a set of all available weak learners, i.e., C = {fj : X → Y | j = 1, 2, · · · }.
Let further Φ(x) = (f1(x), f2(x), · · ·)T and θ = (θ1, θ2, · · ·)T be a real vector
that has the same dimension with Φ(x), where T denotes transposition of a
vector. Then, define an exponential model associated with C

M(C) =
{

µ(y|x; θ) = exp
(
−y

2
〈θ, Φ(x)〉 − g(x; θ)

)}
, (2)

where 〈·, ·〉 is an Euclidean inner product and g(x; θ) = −
〈
θ,

∑
y′∈Y

y′

2 p(y′ |x)Φ(x))
〉
.

2

Note that the model M(C) is not an usual statistical model since
∑

y∈Y µ(y |x; θ) 6=
1 in general. Consider a problem to optimize θ̂ such that µ(y |x; θ̂) is the near-
est point among M(C) from the underlying distribution p(y |x) with respect
to KL divergence in Eq. (1), i.e., θ̂ = argminθ D(p(y |x), µ(y |x; θ)). For any
µ ∈ M(C), the divergence is calculated as

D(p, µ) =
∫

X
p(x)

∑

y∈Y
µ(y |x; θ) − P (y |x)

+P (y |x)(log(µ(y |x; θ)) − log(P (y |x))))dx

=
∫

X
p(x)

∑

y∈Y
µ(y |x; θ) + P (y |x) log(µ(y |x; θ))dx + Const

=
∫

X
q(x)

∑

y∈Y

exp
(
−y

2
〈θ, Φ(x)〉 − g(x; θ)

)
dx + Const, (3)

where Const is a constant with respect to θ. This follows from E[−(Y/2) 〈θ, Φ(x)〉−
g(x; θ) |X = x] = 0. since

∑

y∈Y

p(y |x)ξ(µ(y |x; θ)) =
∑

y∈Y

p(y |x)(−y

2
〈θ, Φ(x)〉 − g(x; θ))

=

〈∑

y∈Y

−y

2
p(y |x)θ, Φ(x)

〉
− g(x; θ)

= 0.

We define an exponential loss function A by the first term in Eq. (3). , i.e.,

A(F (·; θ)) =
∫

X
q(x)

∑

y∈Y

exp(−yF (x; θ) − g(x; θ))dx, (4)

where F (x; θ) = 〈θ, Φ(x)〉 corresponds to a discriminant function constructed by
boosting. The minimization of KL divergence from the underlying distribution
P to the model M(C) is exactly equal to the minimization of the exponential
loss function A with respect to θ. In practical cases, the underlying distributions
q(x) and p(y |x) are unknown. Instead, when the training data {Xi, Yi}n

i=1 are
given, the empirical distributions p̂(x, y) = (1/n)

∑n
i=1 I(x = Xi)I(y = Yi) is

available, where I denotes an indicator function. Assuming further that there
exists only a single y′ ∈ Y such that p(y′ |x) > 0 for each x ∈ X , we have the
empirical loss function defined as

Â(F (·; θ)) =
1
n

n∑

i=1

exp(−YiF (Xi; θ)), (5)

where F (x; θ) = 〈θ, Φ(x)〉 corresponds to a discriminant function constructed
by boosting. See Lebanon and Lafferty (2002) for the detailed derivation. The

3

function Â in Eq. (5) is in fact the loss function that AdaBoost minimizes
iteratively with respect to θ as follows. Let F0(x) ≡ 0 be an initial discriminant
function. For a given current discriminant function, Ft−1, AdaBoost chooses
a new weak learner, ft, and its coefficient, αt, iteratively as follows. For t =
1, 2, · · · , τ ,

ft ≈ argmin
f∈C

Â(Ft−1 + αf) for any positive α, αt = argmin
α∈R

Â(Ft−1 + αft),

(6)
and then the discriminant function is updated as Ft(x) = Ft−1(x) + αtft(x).
The final classifier is obtained as g(x) = sign(Fτ (x; θ)) after τ repetitions of
this process. Thus, AdaBoost can be interpreted as the iterative algorithm of
minimizing empirical KL divergence from the empirical distribution p̂ to the
model M(C).

Finally, we remark that the above description about AdaBoost can be ex-
tended to a general boosting with any convex and increasing loss function (Fried-
man et al., 2000; Murata et al., 2004). We also remark that, by taking the bias
function g(x; θ) in Eq. (2) such that g(x; θ) = log

∑
y′∈Y exp(−y′

2 〈θ, Φ(x)〉),
then the exponential model M(C) becomes an usual statistical model. In this
case, Â reduces to an usual log-likelihood and the above algorithm reduces to
LogitBoost (Friedman et al., 2000). Note that the first optimization in Eq. (6)
does not depend on the value of α′. This does not exactly hold when we use
another loss function but approximately holds in the sense of a one-dimensional
approximation. For details, see Murata et al. (2004), for example.

3 Boosting as a kernel machine

3.1 Interpretation of boosting in the view of kernel ma-
chine

We show that boosting and a kernel machine are unified in the framework
of kernel exponential family. We first introduce a kernel function KC(x, x′)
associated with weak learners C defined as

KC(x, x′) =
∑

fj∈C

πjfj(x)fj(x′), (7)

where 0 ≤ πj ≤ 1 and
∑

j πj = 1. Note that, if {πj} are uniform, KC is just
equal to the one suggested in Rätsch et al. (2000). The kernel function KC
can be interpreted as follows. Suppose that a random classifier F such that F
is randomly chosen from C according to the probability {πj}, i.e., Prob(F =
fj) = πj . When x, x′ ∈ X are given, the value of KC(x, x′) is just the average
of F(x)F(x′). Noting that F(x)F(x′) = 2I(F(x) = F(x′)) − 1, we further have

KC(x, x′) = EF[F(x)F(x′)] = EF[2I(F(x) = F(x′)) − 1]
= 2EF[I(F(x) = F(x′))] − 1 = 2Prob(F(x) = F(x′)) − 1.

4

Thus, the larger the probability of the event that the chosen classifier assigns
the same label to x and x′ is, the larger value KC takes in the closed interval
[−1, 1]. We refer to KC as a Weak Learner kernel (WL kernel) in the sequel.

We define a reproducing kernel Hilbert space (RKHS) induced by KC as

HKC =
{

F (x; θ) =
∑

j

θjfj(x) | θj ∈ R , fj ∈ C for any j
}

, (8)

equipped with an inner product defined as

〈F, G〉HKC
=

∑

j

1
πj

θjθ
′
j ,

for any F (x; θ), G(x; θ′) ∈ HKC . It should be remarked that HKC directly
corresponds to just the set of all discriminant functions constructed by boosting.
We may easily confirm the following reproducibility properties:

∀x ∈ X , 〈F (·; θ),KC(·, x)〉HKC
= F (x; θ),

∀x, x′ ∈ X , 〈KC(·, x),KC(·, x′)〉HKC
= KC(x, x′). (9)

By the reproducibility, we may rewrite the exponential family in Eq. (2) in
terms of KC as the kernel exponential family:

M(C) =
{

µ(y|x; θ) = exp
(
−y

2
〈F (·; θ),KC(·, x)〉HKC

− g(x; θ)
)∣∣∣ F ∈ HKC

}
,

(10)
where g(x; θ) = −

〈
F (·; θ),

∑
y′∈Y

y′

2 p(y′ |x)KC(·, x))
〉
. This kernel exponential

family in Eq. (10) is of the same form with the one that was introduced in Canu
and Smola (2006). Thus, the boosting algorithm uses the same model with ker-
nel machines and is essentially equal to kernel machines. In contrast, supposing
that a general kernel K (not restricted to the WL kernel) can be expanded
as K(x, x′) =

∑∞
j=1 γjφj(x)φj(x′), the kernel machine is also interpreted as a

boosting algorithm with weak learners C = {φj(x)}∞j=1. The differences between
both methods are usually loss functions (or statistical divergence) to be mini-
mized and the optimization algorithm: boosting iteratively optimizes, while a
support vector machine uses the quadratic programming, for example.

By exploiting this relationship, we give an interesting view to boosting. As
the step increases, boosting iteratively adds weak learners to the discriminant
function and then the discriminant function gets more complicated. We can
observe this process with respect to the Gram matrix throughout the WL kernel
function. To illustrate this, we introduce the decision stump, which is one of
the most widely-used weak learners. A decision stump f s is defined as:

f s(x;m, b) = sign(xm − b), m = 1, 2, · · · , M, (11)

b ∈ R is a location parameter and xm denotes the m-th element of x. It is
desirable to prepare all possible values in R as the candidate of b. However,

5

when a training data set {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)} is given, we usually
prepare a finite collection of decision stumps for each feature Xm in the following
manner for simplicity,

(a) Sort all unique values of the m-th feature Xm as {Xi′,m | i′ = 1, 2, · · ·nm}
where nm is the number of unique values of the m-th feature and Xi′,m is
the m-th element of Xi′ .

(b) We prepare decision stumps f s(x; m, b) whose location parameter b are at
the mid-points between sequential pairs of the sorted collection {Xi′,m | i′ =
1, 2, · · · , nm}.

Finally, we construct Cds by gathering all decision stumps prepared in the
above steps. Therefore the number of weak learners contained in Cds, is J =∑M

m=1(nm − 1). Using Eq. (7) with uniform distribution πj = (1/J), we may
define a WL kernel KCds associated with decision stumps. Similarly, we also
may define KCds for any subsets of Cds. Panel (a) in Figure 1 shows that the
WL kernel KCds(x, x′) associated with weak learners of the early learning stage
returns larger values if x and x′ belong to the same class and vice versa. This
implies the kernel machines with this KCds may work well to some extent. Panel
(b) is the Gram matrix of KCds with all the decision stumps in Cds. Compared
to Panel (a), this has richer structure, which implies lower training error.

10 20 30 40 50

10
20

30
40

50

sample

sa
m

pl
e

(a) early KCds

10 20 30 40 50

10
20

30
40

50

sample

sa
m

pl
e

(b) KCds

10 20 30 40 50

10
20

30
40

50

sample

sa
m

pl
e

(c) Kds

10 20 30 40 50

10
20

30
40

50

sample

sa
m

pl
e

(d) Kg

Figure 1: Gram matrices on the slope data illustrated in Figure 2. The first
twenty-eight samples belong to the positive class, while the remaining samples
belong to the negative class. Panel (a) shows the Gram matrix of KCds consisting
of the first ten weak learners chosen by AdaBoost, while Panel (b) shows the
Gram matrix of all decision stumps in Cds. Panel (c) shows the Gram matrix of
Kds (see section 3.2), while Panel (d) shows that of Kg.

3.2 Weak Learner kernel functions

In this section, we derive simple kernel functions associated with some weak
learners. To obtain a good performance, it is required for boosting to prepare
rich weak learners. For example, in the case of decision stumps, its location
parameter b should be distributed densely in the range of each Xm, as was
mentioned in the previous section. However, the naive definition of the WL

6

kernel in Eq. (7) requires computationally expensive calculation, as the number
of weak learners increases. This is the case for decision stumps if the feature
number M is large. In the following, we show that decision stumps and linear
classifier leads to a simple kernel even if we prepare infinitely many of them.
These new kernels are not computationally expensive.

To derive new kernels, we introduce a continuous version of KC . Assume
that C is some statistical model that is continuously parameterized as C =
{f(x; ξ) | ξ ∈ Ξ}. Particularly to this case, we may rewrite the definition of KC
as

KC(x, x′) =
∫

ξ∈Ξ

π(ξ)f(x; ξ)f(x′; ξ)dξ, (12)

for any probability density function π(ξ) on Ξ. Suppose now that each feature
Xm has a finite range [`m, rm], where −∞ < `m < rm < ∞ for each m.
Redefine Cds as the set of all f s with any b value in this range for each m, i.e.,
Cds = {f s(x;m, b) |m = 1, 2, · · · , M , ∀m, b ∈ [`m, rm]}. Let the distribution
of parameters of f s be uniform, i.e.,

π(m, b) = π(m) · π(b |m) =
1
M

· 1
rm − `m

.

By using the definition of both Eq. (7) and (12), we define a decision stump
kernel Kds as

Kds(x, x′) =
M∑

m=1

∫ rm

`m

π(m, b)f s(x; m, b)f s(x′; m, b)db

=
M∑

m=1

∫ rm

`m

sign(xm − b)sign(x′
m − b)

M(rm − `m)
db.

This integral is easily calculated and we have

Kds(x, x′) = 1 − 2
M

M∑

m=1

|xm − x′
m|

rm − `m
. (13)

Obviously, Kds requires much less computational cost than KCds and experi-
ments show it works as well. For instance, the Gram matrices of KCds and Kds

in Figure 1 panels (b) and (c) are quite similar. Several experiments will also
confirm their similarity on their performance (Section 4).

We derive a kernel function associated with linear classifier, which is also
widely-used in boosting. Let C = {f(x; w) = wT x |w ∈ <M}. Let further π(w)
be an arbitrary distribution of the parameter w with mean 0 and covariance V .
Similarly to the above calculation, Klin is derived as

Klin(x, x′) =
∫

<M

π(w)f(x; w)f(x′; w)dw = xT

{∫

<M

π(w)wwT dw

}
x′ = xT V x′.

This is an Euclidean inner product generalized by the matrix V , which has often
appeared in linear algebra. Note that this is not a WL kernel since f(x;w) is
not a classifier in the exact sense.

7

3.3 A regularized boosting algorithm

A simple regularized boosting algorithm is proposed in this section. The algo-
rithm will be developed based on the following proposition.

Proposition 1. Suppose that the training data {Xi, Yi}n
i=1 are given. Then,

there necessarily exists η ∈ Rn such that the minimizer θ̂, i.e.,

θ̂ = argmin
θ

Â(F (·; θ)) + λ‖F (·; θ)‖2
HKC

(14)

admits the representation of the form:

θ̂j =
n∑

`=1

πjfj(X`)η` for each j.

The proof immediately follows from the direct application of the representer
theorem (Schölkopf and Smola, 2001) with the kernel KC . The regularized
boosting is derived by iterative minimization of the regularized loss function in
Eq. (14) with respect to η as follows. We define the discriminant function that
was suggested by Proposition 1 as

F (x; η) =
∑

j

{
n∑

`=1

πjfj(X`)η`

}
fj(x) =

n∑

`=1

η`KC(x,X`).

Noting that, by Eq. (9),

〈
F , F

〉
HKC

=

〈
n∑

`=1

η`KC(x, X`),
n∑

`′=1

η`′KC(x,X`′)

〉

HKC

=
n∑

`=1

n∑

`′=1

η`η`′KC(X`, X`′),

we may rewrite Eq. (14) for any F as

Â(F (·; η)) =
1
n

n∑

i=1

exp(−YiF (Xi; η)) + ληT KCη, (15)

where KC denotes the Gram matrix of KC . The algorithm is obtained in the
same way with AdaBoost as was described in Eq. (6) by replacing Â with Â
and C with C′ = {(h(x) = ±KC(x,X`) | ` = 1, 2, · · · , n}. In this case, the first
equation in Eq. (6) is calculated as

ht = argmin
h∈C′

Â(F t−1(·; ηt−1) + αh(·))

≈ argmin
h∈C′

Â(F t−1(·; ηt−1)) +
∂Â(F t−1(·; ηt−1) + αh(·))

∂α

∣∣∣∣∣
α=0

α

= argmin
h∈C′

1
n

n∑

i=1

{
exp(−YiF t−1(Xi; ηt−1))(−Yi) + 2nληt−1

i

}
h(Xi)α.

As a result, we obtain the following algorithm.

8

1. Fix a smoothing parameter λ > 0 and set η0 as an n-dimensional zero
vector.

2. For t = 1, 2, · · · , τ , repeat the following process.

(a) Set the weights {Dt(i)} as

Dt(i) =
1
Z
{exp(−YiF t−1(Xi; ηt−1))(−Yi) + 2nληt−1

i }, (16)

where Z is a normalizing constant such that
∑

i Dt(i) = 1.

(b) Find a new best weak learner from C′ and its coefficient as follows:

ht = argmin
h∈C′

n∑

i=1

Dt(i)h(Xi), (17)

αt = argmin
α

Â(F t−1(·; ηt−1) + αht). (18)

(c) Update {ηt−1
` } as ηt

` = ηt−1
` +αt(I(ht = K(·, X`))−I(ht = −K(·, X`))).

3. Finally, we obtain a resultant classifier g(x) = sign(F (x; ητ)).

Schapire and Singer (1999) proposed the generalized version of AdaBoost, where
weak learners return not the labels in Y but real values. Our proposal is equal
to this generalized AdaBoost with weak learners C′ except the loss function. In
particular, both are exactly equal if λ = 0.

The ordinary boosting solves high dimensional optimization problem since
many weak learners are often used. In contrast, the regularized boosting uses
only n weak learners in C′. As the trade-off, each weak learner of C′ gets much
more complicated than the original weak learner in C. In a special case where
decision stumps are used, however, the use of decision stump kernel Kds reduces
the complexity of KC considerably, as was described in the previous section.
We also remark that the above algorithm works with any kernel functions. We
compare the use of decision stump kernel with the radial basis function kernel
in the next section.

It is worth noting that the minimization of Â can be interpreted from the
Bayesian view when we restrict M(C) to a statistical model as was described
in Section 2. Taking $(θ; λ) ∝ exp(−λ‖θ‖2) as a prior distribution of θ, the
posterior is proportional to $(θ; λ)µ(y |x; θ) for µ ∈ M(C). It is straightforward
to find that the search of the minimizer of the loss function corresponding to Â
is equal to the search of the mode of the posterior.

We evaluate the generalization performance of the regularized boosting.
An upperbound of the generalization error of kernel machines was derived in
Bartlett and Mendelson (2002). Applying their way to this method, we easily
obtain the following upperbound of the generalization error independent of the
choice of the parameter distribution π in Eq. (7) or (12).

9

Proposition 2. Let L be a Lipschitz constant of exp in the range of F (x; η).
Let further KC be any WL kernel function associated with C. With probability
at least 1 − δ, every function F (x; η) =

∑n
`=1 η`KC(x, X`) with ‖F‖2

HKC
≤ B

satisfies

P (Y F (X; η) ≤ 0) ≤ Â(F (·, η)) +
4LB√

n
+ L

√
2 ln(1/δ)

n
.

This upperbound indicates that the generalization error of F is small if Â(F)
and B are small, which is just what the proposed algorithm tries to do.

4 Experiments

To illustrate the performance of our proposals, we make a comparison between
AdaBoost with Cds and the proposed regularized AdaBoost (RegAdaBoost) with
kernel functions KCds , Kds and Kg, where Kg is an RBF kernel Kg(x, x′) =
exp(−‖x − x′‖2/h). In experiments, we used the range of each feature in the
training data as the estimates of {`m, rm} in Kds. The iteration number τ
in AdaBoost and λ in RegAdaBoost were determined by using ten-fold cross-
validation. The iteration number τ in RegAdaBoost was taken as sufficiently
long except the case of Kg. In the case of Kg, we used ten-fold cross validation
to choose τ since the use of Kg causes sometimes the overfit. To evaluate
the generalization performance, we first partition the whole data set into the
training data and the test data. The size of test data was taken as much as
possible unless it is larger than a thousand. Each method constructed a classifier
based on the training data and its performance (test error) was evaluated on
the test data.

The data sets shown in Table 1 were from UCI and DELVE benchmark
repositories except ‘slope data’. Some of the data sets are not binary classifica-
tion problems, therefore, we partition the labels into two groups. ‘slope data’ is
the simplest artificial data illustrated in Figure 2 and reflects the characteristics
of each method. AdaBoost overfitted to the mislabels, while RegAdaBoost with
KCds constructs a smooth decision boundary by ignoring them. Table 1 in fact
indicates that RegAdaBoost overperformed AdaBoost in almost data sets and
gave the best or nearly-best results.

It is observed in Table 1 that RegAdaBoost with KCds and Kds exhibited
quite similar performance. The similarity of the Gram matrix between them
in Figure 1 also supports this observation since RegAdaBoost depends on the
Gram matrix directly. These observations implies the superiority of Kds because
of its small computational cost.

Finally, it is remarked that RegAdaBoost with RBF kernel is more flexible
as illustrated in Figure 2 and 1. As a result, it attains the good approximation
ability but suffers from the overfit. Our experiments showed that it performed
well in several data but quite poor sometimes. The main reason of the poor
performance is that Kg has only one parameter h because we did not use of

10

multiscaling. However, the tuning of the multiscaling of RBF kernel is not easy.
In contrast, the decision stump kernel Kds has parameters that can quite easily
be tuned.

Table 1: Performance of AdaBoost and RegAdaBoost with various kernel func-
tions on some data sets. ‘sample’ is the number of samples, ‘feature’ is the
number of features. ‘training data’ is the number of the training data. ‘TE’
denotes the test error. (best method in bold face). ‘bcw’ is ‘breast-cancer-
wisconsin’ data.

data type feature training data TE (AdaBoost) TE (RegAdaBoost)
KCds Kds Kg

slope artificial 2 50 19.5 14.7 14.8 18.1
bcw real 9 200 7.88 3.32 3.73 2.9
splice real 60 200 13.4 12.4 12.2 17.3

thyroid real 5 100 5.26 0.87 0.87 3.51
titanic real 3 600 20.5 21.7 20.8 21
wine real 13 100 5.19 0 0 31.16

waveform artificial 21 200 11.1 9.8 9.3 8.7

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

x1

x 2

(a) AdaBoost

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

x1

x 2

(b) KCds

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

x1

x 2

(c) Kds

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

x1

x 2

(d) Kg

Figure 2: Plots of ‘slope data’ in Table 1 with decision boundary (the solid line)
constructed by classification methods. The red points belong to the positive
class, while the black points belong to the negative class. Panel (a): AdaBoost,
Panel (b)-(d): RegAdaBoost with various kernels. The dotted line in the top
left panel shows the Bayes optimal decision boundary.

5 Discussion

In this paper, we proposed some extensions of boosting based on the connections
between boosting and a kernel machine through the WL kernel. We developed
a new simple regularized boosting algorithm (RegAdaBoost) whose regularizer
is naturally derived from the WL kernel. It has a more direct connection to the

11

kernel machines than already proposed regularized boosting methods, and our
experiments indicated that this regularized AdaBoost overperformed AdaBoost
on various real-world data.

One drawback of the WL kernel is the computational cost, but we overcome
this problem by proposing a new kernel, which is based on the investigation of
the RKHS induced by the weak learners. Although we have only shown such
a kernel for decision stumps weak learners (decision stump kernel), it works
remarkably well with less computation and we believe this opens a new direction
for boosting methods. Our future works are to study the properties of such
kernel functions, and extend this idea from decision stumps to wider class of
weak learners.

References

Bartlett, P. L., Mendelson, S., 2002. Rademacher and gaussian complexities:
Risk bounds and structural results. Journal of Machine Learning Research 3,
463–482.

Breiman, L., 1998. Arcing classifiers. Annals of Statistics 26 (3), 801–849.

Canu, S., Smola, A. J., 2006. Kernel methods and the exponential family. Neu-
rocomputing 69, 714–720.

Freund, Y., Schapire, R. E., 1997. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences 55 (1), 119–139.

Friedman, J. H., Hastie, T., Tibshirani, R., 2000. Additive logistic regression:
A statistical view of boosting. Annals of Statistics 28, 337–407.

Lebanon, G., Lafferty, J., 2002. Boosting and maximum likelihood for exponen-
tial models. Advances in Neural Information Processing Systems 14.

Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S., 2004. Information geom-
etry of U-Boost and Bregman divergence. Neural Computation 16, 1437–1481.

Rätsch, G., Onoda, T., Müller, K. R., 1999. Regularizing AdaBoost. Neural
Information Processing System.

Rätsch, G., Onoda, T., Müller, K. R., 2001. Soft margins for AdaBoost. Machine
Learning 42, 287–320.

Rätsch, G., Schölkopf, B., Mika, S., Müller, K. R., 2000. SVM and Boosting:
One Class. GMD FIRST 119.

Schapire, R., Singer, Y., 1999. Improved boosting algorithms using confidence-
rated predictions. Machine Learning 37 (3), 297–336.

12

Schölkopf, B., Smola, A. J., 2001. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization and Beyond. MIT Press.

Sun, Y., Li, J., Hager, W., 2004. Two new regularized AdaBoost algorithms.
ICMLA.

Zhu, J., Hastie, T., 2005. Kernel logistic regression and the import vector ma-
chine. Journal of Computational & Graphical Statistics 14 (1), 185–205.

13

