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ABSTRACT

We propose a new type of kernel function, where feature space
is explicitly given with a piece-wise linear mapping from the
input space. This idea is inspired by sparse linear system anal-
ysis, where inputs are represented as a sparse linear combina-
tion of “dictionary vectors.” This article gives the idea of such
kernel function, and some preliminary experimental results.

1. INTRODUCTION

Although kernel methods became one of the standard meth-
ods especially in machine learning, there are still a lot of open
problems. One important problem is the choice of kernel
function. In many applications, we replace this problem by
tuning some parameters which characterize the kernel func-
tions, for example, width of Gaussian kernel or order of poly-
nomial kernel, but it is important to find other families of ker-
nel functions. In this article, we propose a new type of kernel
function. The idea comes from the sparse or over-complete
(under-determine) linear system analysis.

Recently, the idea of sparse linear system is attracting a lot
of interests. Olshausen and Field[1] have clearly shown that
the sparse representation principle describes the information
representation in visual cortex. For speech signals, recover-
ing multiple source signals from smaller number of sensors’
observations is important [2, 3], where the sparsity of sound
signals in time or time-frequency domain plays an important
role. Independently, Donoho and Huo discussed conditions
for sparse representation to be unique [5], and the lasso (least
absolute shrinkage and selection operator) model proposed by
Tibishirani[6] is also related to the sparse representation.

In sparse linear system, data are represented as a linear
combination of over-complete basis vectors, which we call
dictionary. There are a lot of works which study the algo-
rithm of dictionary learning and the performance of source
extraction[7, 8, 9, 10, 11].

In this article, we view the sparse linear system from dif-
ferent point. We consider the sparse representation as the fea-
tures of the input signals. Since the features are sparse, we
have a good analogy with kernel methods, where we bring
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inputs to high-, even infinite-dimensional feature space. We
treat the sparse representation as the feature vector and pro-
pose a kernel function. This method can be viewed as a piece-
wise linear operation, therefore we call this piece-wise linear
kernel. We first give the outline of the sparse linear system
analysis, and propose a piece-wise linear kernel. We also give
a preliminary experimental results.

2. SPARSE LINEAR SYSTEM ANALYSIS

2.1. Problem

Consider the case where data are nonzeroN -dimensional real
vector x = (x1, · · · , xN ) ∈ <N , x 6= . Our problem is to
find a representation of x as a linear combination of a set of
basis vectors, which we call dictionary. Let D ∈ <N×M

defined as,

D = [d1, · · · ,dM ], dk ∈ <N .

In this paper, we consider the case where M > N . Now, our
problem is to find the following sparse vector s,

x = d1s1 + · · ·+dMsM = Ds, s = (s1, · · · , sM )T . (1)

There is another model which assume additive noise as

x = d1s1 + · · ·+ dMsM + n, n = <N ,n ∼ p(n). (2)

where noise distribution is given as p(n). One widely used
distribution is multi-dimensional Gaussian distribution [1, 8,
9]. Both are used to derive the sparse representation where
model in eq.(2) may give sparser representation. In this arti-
cle, we use noiseless model in eq.(1). We further impose the
following two conditions, on dictionary, that is

‖dk‖2 = 1, k = 1, · · · ,M
rank[di1 , · · · ,diN ] = N, il 6= ik,

i1, · · · , iN ∈ {1, · · · ,M},
(3)

where ‖ · ‖2 denote l2 norm. We restrict every dictionary
vector to stay on the surface of unit sphere in <N , and any N
combination of the vectors are linearly independent.



Equation(1) has infinite solutions, and our goal is to find
the “sparse” solution among them. Following the definitions
of Donoho and Elad[4], we have two natural formulations,

(P0) Minimize ‖s‖0, subject to x = Ds

(P1) Minimize ‖s‖1, subject to x = Ds

Here, the l0 norm ‖ ·‖0 gives the number of nonzero elements
of the vector, while l1 norm ‖ · ‖1 gives the sum of absolute
values of the elements.

It seems the solution of (P0) gives the “sparse” solution.
Donoho and Elad studied the condition where the solution of
(P0) is unique and identical to that of (P1) [4], but it can only
happen when ‖s‖0 < N , because if ‖s‖0 = N , there are
multiple solutions to (P0). Moreover there is no efficient al-
gorithm to solve (P0), and we focus on (P1) where the prob-
lem is solved efficiently with LP (linear programming).

2.2. Algorithm

We briefly explain the LP formulation to solve (P1). Let us
define the following two positive vectors,

u = (u1, · · · , uN )T , v = (v1, · · · , vN )T , u,v ∈ <N+ .
and let s = u− v. Now, (P1) is rewritten as

(P ′

1) Minimize
∑

i

(ui + vi),

subject to x = D̃

(

u
v

)

, u,v � 0. where D̃ = [D,−D].

Here, u,v � 0 denotes that every component of u and v
is non-negative. This is a standard LP formulation, and under
the condition in eq.(3), the sparse solution of (P1) is unique[10].
Let us define y = (uT ,vT )T ∈ <2M

+ , and the solution of
(P ′

1) as ŷ. The solution ŷ can be efficiently computed with
simplex method. It is known that at most N components of ŷ
are not zero, that is ‖ŷ‖0 ≤ N .

2.3. Geometrical view

From our assumption in eq.(3), any N columns of D are lin-
early independent. Let us choose N columns from D̃, and let
the matrix A. We also define B as a N × (2M −N) matrix
which consists of the rest of the columns. By rearranging y
as y → (yTA,y

T
B)T , corresponding to A and B, and we have

the following relation

x = D̃y = AyA +ByB .

Since A is invertible,

yA = A−1x−A−1ByB .

It is known [11] that optimal solution is expressed as yA =
A−1x, yB = , for the A,B which satisfies

A−1x � 0, T(2M−N) − TNA−1B � T .

x

d̃i

d̃j

d̃k

H(A(i))

Fig. 1. Geometrical view of (P ′

1) solution (N = 3): blue cir-
cles correspond to dictionary vectors on the surface of sphere,
while green cross corresponds to data point x.

Following the discussion in [11], we further define a set of
possible optimal matrices A as

A = {A|T(2M−N) − TNA−1B � T , det(A) 6= 0}
= {A(1), · · · , A(q)}.

A = {A(i)} splits the whole space of {x} into q disjoint
convex hulls defined as

H(A(i)) = {x|A−1x � 0},

Figure 1 schematically shows the problem for N = 3. The
solution of (P ′

1) is viewed as follows: the whole space is split
into q disjoint region H(A(1)), · · · ,H(A(q)) and in each re-
gion, x is mapped to a subspace of a higher dimensional space
by a linear transform given by A(i)−1

. Therefore, this trans-
formation from x to y is a piece-wise linear transformation.

Furthermore, the transformation is continuous. We briefly
sketch the proof. As far as x stays inside aH(A(i)), mapping
from x to y is linear and continuous. When we move x from
one H(A(i)) to adjacent H(A(j)), x goes through a bound-
ary. At the boundary of H(A(i)) and H(A(j)), they share
some dictionary vectors. Let x̃ ∈ H(A(i)) ∩H(A(j)), x̃ 6= 
and consider we move x from H(A(i)) to H(A(j)) through
x̃. When x ∈ H(A(i)), the transformation from x to y is de-
fined as A(i)−1

x, and when it becomes x̃, A(i)−1
x̃ only have

positive values on the coefficients, which corresponds to the
dictionary vectors included inH(A(i))∩H(A(j)). This is the
same when x moves fromH(A(j)) to x̃, and the transforma-
tion from x to y is piece-wise linear and continuous.

3. MAPPING AND KERNELS

3.1. Features

Now, let us define φD̃(x) as a mapping from x to y,

φD̃(x) = y(x) = argmin
s

{

2M
∑

i=1

yi
∣

∣ x = D̃y,y � 0
}

. (4)



As it is shown in the last section,φD̃(x) is a piece-wise linear
and continuous mapping. We consider thisφD̃(x) as a feature
vector. We define a kernel function as,

K(x, z) = φD̃(x)TφD̃(z).

The Gram matrix G = [K(xi,xj)] is positive semi-definite.
It has an interesting property, that is, for x ∈ H(A(i)) and
z ∈ H(A(j)), x, z 6= 
if

(

H(A(i)) ∩ H(A(j))
)

\ {} = ∅,

K(x, z) = 0

if
(

H(A(i)) ∩ H(A(j))
)

\ {} 6= ∅

K(x, z) = φD̃(x)TφD̃(z) > 0,

if x, z ∈ H(A(i)),

K(x, z) = xT (A(i)−1
)TA(i)−1

z.

These properties are distinctive from Gaussian kernel func-
tion, where K(x, z) > 0 for ∀x, z ∈ <N . Note that Gaus-
sian kernel provides a smooth function, while piece-wise lin-
ear kernel provides a continuous but angular function.

If this kernel is used for SVM, we will have a linear func-
tion of f(x) = wTφD̃(x) + b whose sign of the output gives
the estimated class. Since the mapping is linear in each con-
vex hullH(A(i)), we only have single linear separator in each
convex hull H(A(i)). This seems very restrictive. But there
are a lot of cases where this kernel is effective. For example,
in image recognition, or text classification, the data can be
normalized, and only the ratio, or the direction of the data is
important. In such a case. This kernel is might be effective.

3.2. Dictionary

We have defined the piece-wise linear kernel. When the dic-
tionary vectors are defined, the idea is natural. Now, it is
not difficult to imagine that the performance of the resulting
method based on the piece-wise linear kernel is strongly af-
fected by the choice of dictionary vectors.

Let us consider the problem of learning dictionary vec-
tors from training data. There are a lot of works on dictionary
learning [7, 8, 12, 9, 10, 1]. One popular method is to define
a noisy model as in eq.(2) and the prior of s is given, for ex-
ample, as a bilateral exponential distribution. Then using the
MAP estimation of y, the likelihood is defined, and it is used
as the cost function to learn the dictionary vectors. This is an
interesting direction, and we may use them in our future ex-
periments. However, in this article, we show our preliminary
results where the data size is quite small, and we used simpler
methods for dictionary learning. We briefly explain them.

Random dictionary Let us assume that the data are center-
ized. Then, one naive method of creating the dictionary
vectors is to generate random N dimensional vectors
on the surface of unit sphere.

Sample vector dictionary It is also possible to use the nor-
malized training data points or a subset of them as the
dictionary vectors. Given number M of the vectors are
chosen randomly from the training data set.

k–mean Li, et al., suggested to use k–mean method [10] for
dictionary learning. First, the training data are cen-
terized and normalized to have unit length. For the
normalized data, k-mean method is applied where the
number of the dictionary vectors k is prefixed, and fi-
nally those k–mean vectors are normalized to have a
unit length.

We used above three dictionary learning methods in the
next section. Note that in order to learn the dictionary vec-
tors, the number of dictionary vectors M , must be specified
beforehand. Unfortunately, we have not used any learning
method to determine M , but tried many numbers.

4. EXPERIMENT

We applied this piece-wise linear kernel for classification prob-
lem, with SVM. We used Pima Indians diabetes database (8
numeric attributes, no missing values, 2 classes, 768 instances)
and Ionosphere database (34 numeric attributes, no missing
values, 2 classes, 351 instances) from UCI Machine Learning
Repository.

For both data sets, first 200 instances are used for training,
and the rests for testing. Mean of each attribute is computed
from training data, and extracted from all the data. Also vari-
ance of each attribute is computed from training data, and
every attribute of data is divided with corresponding standard
deviation.
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Fig. 2. Error rate of each experiments on Pima Indian diabetes
database: left top, random dictionary is used, right top, sam-
ple vector dictionary is used, and bottom, k–mean dictionary
is used.



First, we show the results for Pima Indians diabetes database.
We tried three methods in the last session for dictionary learn-
ing. The number of the dictionary vectors varies from 10 to
80, and for each method and each number of vectors, we re-
peated same experiments for 10 times, since each dictionary
learning methods includes random process. Figure 2 shows
the error rates of the experiments. In the figure, we show the
mean of the errors with standard deviation. Also the mini-
mum error rate attained in each 10 experiments was plotted
with crosses. The minimum error rate 22.2% was attained
when we used k–means method for dictionary learning, and
the number of the dictionary vectors is 10.

For comparison Gaussian kernel function was used, where
its width parameter was tuned to 30, and the error rate was
less than 21.4% .
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Fig. 3. Error rate of each experiments on Ionosphere
database: left, random dictionary is used, right, sample vector
dictionary is used.

Next, we show the results for Ionosphere database. We
have applied random dictionary and sample dictionary meth-
ods, since k–mean learning needed much time in this case.
The number of the vectors varied from 40 to 180.

The result is shown in Fig.3. The minimum error rate
was attained when we used the random dictionary with size
of 180, and its error rate was 4.0%. For comparison, we note
that Gaussian kernel with 5 as its width parameter attain error
rate of 2.0%.

5. DISCUSSION AND CONCLUSION

We have shown that the idea of the sparse linear system can be
connected to kernel method. This new kernel function works
as a piece-wise linear function. The two experiments show
that the performance strongly depends on the selection of dic-
tionary vectors, but if we choose a good set of dictionary vec-
tors, it may as good as commonly used kernels.

Although we have to work more in order to obtain con-
vincing results, this kernel function has a different character-
istics from well-know kernels, and it is important to show its
potential. Moreover, sparse representation with overcomplete
basis is a well studied subject, and it is important to show it
can be naturally connected to kernel method.
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