
Research Memorandum No. 962 October 28, 2005

Sparse representation and piece-wise linear kernel

Shiro Ikeda

The Institute of

Statistical Mathematics

4-6-7 Minami-Azabu, Minato-ku,

Tokyo, 106-8569, Japan

Sparse representation and piece-wise linear kernel

Shiro Ikeda∗

The Institute of Statistical Mathematics

4-6-7 Minami-Azabu, Minatoku, Tokyo 106-8569, Japan

November 22, 2005

Abstract

We propose a new type of kernel function, where feature space is explicitly given

with a piece-wise linear mapping from the input space. This idea is inspired by sparse

linear system analysis, where inputs are represented as a sparse linear combination

of “dictionary vectors.” This article gives the idea of such kernel function, and some

preliminary experimental results.

1 Introduction

Although kernel methods became one of the standard methods especially in machine learn-
ing, there are still a lot of open problems. One important problem is the choice of kernel
function. In many applications, we replace this problem by tuning some parameters which
characterize the kernel functions, for example, width of Gaussian kernel or order of poly-
nomial kernel, but it is important to find other families of kernel functions. In this article,
we propose a new type of kernel function. The idea comes from the sparse or over-complete
(under-determine) linear system analysis.

Recently, the idea of sparse linear system is attracting a lot of interests. Olshausen and
Field[1] have clearly shown that the sparse representation principle describes the information
representation in visual cortex. For speech signals, recovering multiple source signals from
smaller number of sensors’ observations is important [2, 3], where the sparsity of sound
signals in time or time-frequency domain plays an important role. Independently, Donoho
and Huo discussed conditions for sparse representation to be unique [5], and the lasso (least
absolute shrinkage and selection operator) model proposed by Tibishirani[6] is also related
to the sparse representation.

In sparse linear system, data are represented as a linear combination of over-complete
basis vectors, which we call dictionary. There are a lot of works which study the algorithm
of dictionary learning and the performance of source extraction[7, 8, 9, 10, 11].

In this article, we view the sparse linear system from different point. We consider the
sparse representation as the features of the input signals. Since the features are sparse, we
have a good analogy with kernel methods, where we bring inputs to high-, even infinite-
dimensional feature space. We treat the sparse representation as the feature vector and
propose a kernel function. This method can be viewed as a piece-wise linear operation,

∗This work was supported by the Grant-in-Aid for Scientific Research 16700227, MEXT, Japan.

1

therefore we call this piece-wise linear kernel. We first give the outline of the sparse lin-
ear system analysis, and propose a piece-wise linear kernel. We also give a preliminary
experimental results.

2 Sparse linear system analysis

2.1 Problem

Consider the case where data are nonzeroN -dimensional real vector x = (x1, · · · , xN) ∈ <N ,
x 6= . Our problem is to find a representation of x as a linear combination of a set of basis
vectors, which we call dictionary. Let D ∈ <N×M defined as,

D = [d1, · · · ,dM], dk ∈ <N .

In this paper, we consider the case where M > N . Now, our problem is to find the following
sparse vector s,

x = d1s1 + · · ·+ dMsM = Ds, s = (s1, · · · , sM)T . (1)

There is another model which assume additive noise as

x = d1s1 + · · ·+ dMsM + n, n = <N ,n ∼ p(n). (2)

where noise distribution is given as p(n). One widely used distribution is multi-dimensional
Gaussian distribution [1, 8, 9]. Both are used to derive the sparse representation where
model in eq.(2) may give sparser representation. In this article, we use noiseless model in
eq.(1). We further impose the following two conditions, on dictionary, that is

‖dk‖2 = 1, k = 1, · · · ,M
rank[di1 , · · · ,diN] = N, il 6= ik,

i1, · · · , iN ∈ {1, · · · ,M},
(3)

where ‖ · ‖2 denote l2 norm. We restrict every dictionary vector to stay on the surface of
unit sphere in <N , and any N combination of the vectors are linearly independent.

Equation(1) has infinite solutions, and our goal is to find the “sparse” solution among
them. Following the definitions of Donoho and Elad[4], we have two natural formulations,

(P0) Minimize ‖s‖0, subject to x = Ds

(P1) Minimize ‖s‖1, subject to x = Ds

Here, the l0 norm ‖ · ‖0 gives the number of nonzero elements of the vector, while l1 norm
‖ · ‖1 gives the sum of absolute values of the elements.

It seems the solution of (P0) gives the “sparse” solution. Donoho and Elad studied the
condition where the solution of (P0) is unique and identical to that of (P1) [4], but it can only
happen when ‖s‖0 < N , because if ‖s‖0 = N , there are multiple solutions to (P0). Moreover
there is no efficient algorithm to solve (P0), and we focus on (P1) where the problem is solved
efficiently with LP (linear programming).

2

2.2 Algorithm

We briefly explain the LP formulation to solve (P1). Let us define the following two positive
vectors,

u = (u1, · · · , uN)T , v = (v1, · · · , vN)T , u,v ∈ <N+ .
and let s = u− v. Now, (P1) is rewritten as

(P ′

1) Minimize
∑

i

(ui + vi),

subject to x = D̃

(

u
v

)

, u,v � 0. where D̃ = [D,−D].

Here, u,v � 0 denotes that every component of u and v is non-negative. This is a standard
LP formulation, and under the condition in eq.(3), the sparse solution of (P1) is unique[10].
Let us define y = (uT ,vT)T ∈ <2M

+ , and the solution of (P ′

1) as ŷ. The solution ŷ can be
efficiently computed with simplex method. It is known that at most N components of ŷ are
not zero, that is ‖ŷ‖0 ≤ N .

2.3 Geometrical view

x

d̃i

d̃j

d̃k

H(A(i))

Figure 1: Geometrical view of (P ′

1) solution (N = 3): blue circles correspond to dictionary
vectors on the surface of sphere, while green cross corresponds to data point x.

From our assumption in eq.(3), any N columns of D are linearly independent. Let us
choose N columns from D̃, and let the matrix A. We also define B as a N × (2M −N)
matrix which consists of the rest of the columns. By rearranging y as y → (yTA,y

T
B)T ,

corresponding to A and B, and we have the following relation

x = D̃y = AyA +ByB .

Since A is invertible,
yA = A−1x−A−1ByB .

It is known [11] that optimal solution is expressed as yA = A−1x, yB = , for the A,B
which satisfies

A−1x � 0, T(2M−N) − TNA−1B � T .

3

Following the discussion in [11], we further define a set of possible optimal matrices A as

A = {A|T(2M−N) − TNA−1B � T , det(A) 6= 0}
= {A(1), · · · , A(q)}.

A = {A(i)} splits the whole space of {x} into q disjoint convex hulls defined as

H(A(i)) = {x|A−1x � 0},

Figure 1 schematically shows the problem for N = 3. The solution of (P ′

1) is viewed as
follows: the whole space is split into q disjoint region H(A(1)), · · · ,H(A(q)) and in each
region, x is mapped to a subspace of a higher dimensional space by a linear transform given

by A(i)−1
. Therefore, this transformation from x to y is a piece-wise linear transformation.

Furthermore, the transformation is continuous. We briefly sketch the proof. As far as
x stays inside a H(A(i)), mapping from x to y is linear and continuous. When we move
x from one H(A(i)) to adjacent H(A(j)), x goes through a boundary. At the boundary
of H(A(i)) and H(A(j)), they share some dictionary vectors. Let x̃ ∈ H(A(i)) ∩ H(A(j)),
x̃ 6= and consider we move x from H(A(i)) to H(A(j)) through x̃. When x ∈ H(A(i)),

the transformation from x to y is defined as A(i)−1
x, and when it becomes x̃, A(i)−1

x̃
only have positive values on the coefficients, which corresponds to the dictionary vectors
included in H(A(i)) ∩H(A(j)). This is the same when x moves from H(A(j)) to x̃, and the
transformation from x to y is piece-wise linear and continuous.

3 Mapping and kernels

3.1 Features

Now, let us define φD̃(x) as a mapping from x to y,

φD̃(x) = y(x) = argmin
s

{

2M
∑

i=1

yi
∣

∣ x = D̃y,y � 0
}

. (4)

As it is shown in the last section, φD̃(x) is a piece-wise linear and continuous mapping. We
consider this φD̃(x) as a feature vector. We define a kernel function as,

K(x, z) = φD̃(x)TφD̃(z).

The Gram matrix G = [K(xi,xj)] is positive semi-definite. It has an interesting property,
that is, for x ∈ H(A(i)) and z ∈ H(A(j)), x, z 6=
if

(

H(A(i)) ∩H(A(j))
)

\ {} = ∅,

K(x, z) = 0

if
(

H(A(i)) ∩H(A(j))
)

\ {} 6= ∅

K(x, z) = φD̃(x)TφD̃(z) > 0,

if x, z ∈ H(A(i)),

K(x, z) = xT (A(i)−1
)TA(i)−1

z.

4

These properties are distinctive from Gaussian kernel function, where K(x, z) > 0 for
∀x, z ∈ <N . Note that Gaussian kernel provides a smooth function, while piece-wise linear
kernel provides a continuous but angular function.

If this kernel is used for SVM, we will have a linear function of f(x) = wTφD̃(x) + b
whose sign of the output gives the estimated class. Since the mapping is linear in each
convex hull H(A(i)), we only have single linear separator in each convex hull H(A(i)). This
seems very restrictive. But there are a lot of cases where this kernel is effective. For example,
in image recognition, or text classification, the data can be normalized, and only the ratio,
or the direction of the data is important. In such a case. This kernel is might be effective.

3.2 Dictionary

We have defined the piece-wise linear kernel. When the dictionary vectors are defined, the
idea is natural. Now, it is not difficult to imagine that the performance of the resulting
method based on the piece-wise linear kernel is strongly affected by the choice of dictionary
vectors.

Let us consider the problem of learning dictionary vectors from training data. There
are a lot of works on dictionary learning [7, 8, 12, 9, 10, 1]. One popular method is to
define a noisy model as in eq.(2) and the prior of s is given, for example, as a bilateral
exponential distribution. Then using the MAP estimation of y, the likelihood is defined,
and it is used as the cost function to learn the dictionary vectors. This is an interesting
direction, and we may use them in our future experiments. However, in this article, we show
our preliminary results where the data size is quite small, and we used simpler methods for
dictionary learning. We briefly explain them.

Random dictionary Let us assume that the data are centerized. Then, one naive method
of creating the dictionary vectors is to generate random N dimensional vectors on the
surface of unit sphere.

Sample vector dictionary It is also possible to use the normalized training data points
or a subset of them as the dictionary vectors. Given number M of the vectors are
chosen randomly from the training data set.

k–mean Li, et al., suggested to use k–mean method [10] for dictionary learning. First,
the training data are centerized and normalized to have unit length. For the normal-
ized data, k-mean method is applied where the number of the dictionary vectors k is
prefixed, and finally those k–mean vectors are normalized to have a unit length.

We used above three dictionary learning methods in the next section. Note that in
order to learn the dictionary vectors, the number of dictionary vectors M , must be specified
beforehand. Unfortunately, we have not used any learning method to determine M , but
tried many numbers.

4 Experiment

We applied this piece-wise linear kernel for classification problem, with SVM. We used Pima
Indians diabetes database (8 numeric attributes, no missing values, 2 classes, 768 instances)
and Ionosphere database (34 numeric attributes, no missing values, 2 classes, 351 instances)
from UCI Machine Learning Repository.

5

For both data sets, first 200 instances are used for training, and the rests for testing.
Mean of each attribute is computed from training data, and extracted from all the data.
Also variance of each attribute is computed from training data, and every attribute of data
is divided with corresponding standard deviation.

10 20 30 40 50 60 70 80
20

22

24

26

28

30

32

34

36

38

40

number of dictionary vectors

er
ro

r
ra

te

10 20 30 40 50 60 70 80
20

22

24

26

28

30

32

34

36

38

40

number of dictionary vectors

er
ro

r
ra

te

10 20 30 40 50 60 70 80
20

22

24

26

28

30

32

34

36

38

40

number of dictionary vectors

er
ro

r
ra

te

Figure 2: Error rate of each experiments on Pima Indian diabetes database: left top, ran-
dom dictionary is used, right top, sample vector dictionary is used, and bottom, k–mean
dictionary is used.

First, we show the results for Pima Indians diabetes database. We tried three methods
in the last session for dictionary learning. The number of the dictionary vectors varies from
10 to 80, and for each method and each number of vectors, we repeated same experiments
for 10 times, since each dictionary learning methods includes random process. Figure 2
shows the error rates of the experiments. In the figure, we show the mean of the errors
with standard deviation. Also the minimum error rate attained in each 10 experiments was
plotted with crosses. The minimum error rate 22.2% was attained when we used k–means
method for dictionary learning, and the number of the dictionary vectors is 10.

For comparison Gaussian kernel function was used, where its width parameter was tuned
to 30, and the error rate was less than 21.4% .

Next, we show the results for Ionosphere database. We have applied random dictionary
and sample dictionary methods, since k–mean learning needed much time in this case. The
number of the vectors varied from 40 to 180.

The result is shown in Fig.3. The minimum error rate was attained when we used the
random dictionary with size of 180, and its error rate was 4.0%. For comparison, we note
that Gaussian kernel with 5 as its width parameter attain error rate of 2.0%.

6

40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

18

20

number of dictionary vectors

er
ro

r
ra

te

40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

18

20

number of dictionary vectors

er
ro

r
ra

te

Figure 3: Error rate of each experiments on Ionosphere database: left, random dictionary is
used, right, sample vector dictionary is used.

5 Discussion and conclusion

We have shown that the idea of the sparse linear system can be connected to kernel method.
This new kernel function works as a piece-wise linear function. The two experiments show
that the performance strongly depends on the selection of dictionary vectors, but if we
choose a good set of dictionary vectors, it may as good as commonly used kernels.

Although we have to work more in order to obtain convincing results, this kernel func-
tion has a different characteristics from well-know kernels, and it is important to show its
potential. Moreover, sparse representation with overcomplete basis is a well studied subject,
and it is important to show it can be naturally connected to kernel method.

References

[1] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images,” Nature, vol. 381, pp. 607–609, 1996.

[2] P. Bofill and M. Zibulevski, “Underdetermined blind source separation using sparse
representation,” Signal Processing, vol. 81, pp. 2353–2362, 2001.

[3] T-W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski, “Blind source separa-
tion of more sources than mixtures using overcomplete representations,” IEEE Signal

Processing Letters, vol. 6, no. 4, pp. 87–90, Apr. 1999.

[4] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization,” Proc. Nat. Aca. Sci., vol. 100, no. 5, pp. 2197–2202,
Mar. 2003.

[5] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,”
IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 2845–2862, Nov. 2001.

[6] R. Tibishirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc.,

Series B, vol. 58, no. 1, pp. 267–288, 1996.

[7] A. Hyvärinen, “Estimation of non-normalized statistical models by score matching,”
Journal of Machine Learning Research, vol. 6, pp. 695–709, 2005.

7

[8] A. Hyvärinen and M. Inki, “Estimating overcomplete independent component bases
for image windows,” Journal of Math. Imaging and Vision, vol. 17, pp. 139–152, 2002.

[9] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete representations,” Neural

Comput., vol. 12, no. 2, pp. 337–365, Feb. 2000.

[10] Y. Li, A. Cichocki, and S. Amari, “Analysis of sparse representation and blind source
separation,” Neural Comput., vol. 16, no. 6, pp. 1193–1234, Jun. 2004.

[11] I. Takigawa, M. Kudo, and J. Toyama, “Performance analysis of minimum l1-norm
solutions for underdetermined source separation,” IEEE Trans. Signal Processing, vol.
52, no. 3, pp. 582–591, Mar. 2004.

[12] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T-W. Lee, and T. J. Sejnowski,
“Dictionary learning algorithm for sparse representation,” Neural Comput., vol. 15, no.
2, pp. 349–396, 2003.

8

