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Abstract

This paper reports the issues and results of

AI Challenge: \Understanding Three Simul-

taneous Speeches". First, the issues of the

Challenge are revisited. We emphasis the

importance of information fusion of various

attributes of speeches (sounds) in separating

speeches from a mixture of sounds. This em-

phasis is supported by comparing two meth-

ods of speech separation; computational au-

ditory scene analysis approach that employs

the attributes of sound sources and sound

transmitting channel, and blind source sep-

aration approach that dispenses with these

attributes. Although these two approaches

are usually considered as opposite with re-

gards to whether sound attributes is used or

not, we conclude that they di�er in the ways

of using sound attributes. Next, a new al-

gorithm for information fusion is proposed.

Sound attributes extracted by tracking har-

monic structures and sound source directions

as well as by independent component anal-

ysis are fused according to sound ontology.

Finally, the error reduction rate of the 1-

best/10-best word recognition of each speaker

performed on 200 mixtures of two women's

and one man's utterances of an isolated word

is reported.

1 Introduction

\Listening to several things simultaneously", or

\Price Shotoku" computer after Japanese legend, is

a next goal to automatic speech recognition systems

in AI-related audition research

[

Cooke et al., 1993;

Nakatani et al., 1994; Okuno et al., 1995; Rosenthal

and Okuno, 1998

]

, since automatic speech recognition

systems have been widely available recently on per-

sonal computers and some commercial personal com-

puters come equipped with automatic speech recogni-

tion system. At a crowded party, people can attend one

conversation and switch to another. This capability is

well known as \cocktail party e�ect". However, psy-

choacoustic observation proves that people with normal

hearing capability can listen to at most two things si-

multaneously

[

Kashino and Hirahara, 1996

]

. Therefore,

\listening to several things simultaneously" is a chal-

lenging problem in audition research, and is expected to

augment human's auditory capability or create new ap-

plication areas in sound processing, in particular, sound

recognition systems.

The AI Challenge \Listening to Three Simultaneous

Speeches" (hereafter, the Challenge) proposed at IJCAI-

97 by Okuno et al.

[

Okuno et al, 1997

]

is important in

modeling computer audition, because most researches in

sound processing assume some speci�c sounds as input.

This assumption may not hold in the real-world, because

we usually hear a mixture of sounds, not a single sound.

The Challenge is restated as follows:

� Speakers: The distance between a microphone

and a speaker is at least 1.4m. Three speakers ut-

ter a word simultaneously. They do not have to

start at once.

� Microphones: At most twomicrophones are used.

� Performance Measurement: Error reduction

rates for the 1-best and 10-best of recognition.

� System Design: The system should be extensible

and adaptive for future challenging problems such

as moving talkers or additional speakers.

There may be two main approaches to attack the

Challenge, that is, understanding three simultaneous

speeches. One is the cascaded approach which �rst sepa-

rates each speech from a mixture of sounds and then

recognize each separated speech by automatic speech

recognition system. The other is the integrated approach



which exploits speech separation and speech recognition

in concurrent and integrated ways

[

Cooke et al., 1993;

Ellis, 1996; Lesser et al., 1993

]

.

In this paper, we focus on the cascaded approach to-

ward the Challenge. The cascaded approach consists of

two main processes; one is to separate a speech from a

mixture of sounds and the other is to recognize each sep-

arated speech by automatic speech recognition system.

Okuno et al.

[

Okuno et al, 1997

]

assume the cascaded

approach and investigate the issues of the Challenge from

the following aspects:

I-1. robust automatic speech recognition

[

Luo and Den-

bigh, 1994

]

I-2. signal processing

[

Murata and Ikeda, 1998

]

I-3. general sound understanding, or computational au-

ditory scene analysis (CASA)

I-4. psychoacoustics

[

Kashino and Hirahara, 1996

]

Since the Challenge involves understanding arbitrary

sound which is one of the main topics of computational

auditory scene analysis (CASA)

[

Cooke et al., 1993;

Nakatani et al., 1994; Rosenthal and Okuno, 1998

]

, it

is also considered as a challenge for CASA.

Nakatani and Okuno point out another issue from the

viewpoint of sound representation

[

Nakatani and Okuno,

1998

]

.

I-5. common sound representation, or, sound ontology.

They proposed to use common representation of sounds,

or sound ontology, in the following three purposes:

(1) to integrate sound separation systems such as

speech and music,

(2) to interface sound separation systems with applica-

tions such as automatic speech recognition systems,

and

(3) to integrate bottom-up and top-down processings

in sound separation.

In this paper, we point out another issues in sound

representation and utilization of sound source attributes,

and present an integrated systems that fuses sound at-

tributes extracted by di�erent sound separation systems.

The proposed system is then applied to the Challenge

and the results are reported.

The rest of this paper is organized as follows: Sec-

tion 2 revisits the issues of the Challenge. Section 3

presents the integrated systems to attack the Challenge,

and Section 4 shows preliminary results. Discussion and

Concluding remarks are given in Section 5 and 6.

2 Research Issues Revisited

Consider the additional issue for speech separation:

I-6. role of sound attributes in sound source separation

There have been a lot of dispute on whether sound at-

tributes play an important role in separating speeches

from a mixture of sounds

[

Rosenthal and Okuno, 1998

]

.

Usually, CASA uses various sound attributes such as

common onset, o�set, AM (amplitude modulation), FM

(frequency modulation), formants, and sound source di-

rection as clues to separate speeches from a mixture of

sounds. For example, Nakatani et al. developed speech

separation system, Bi-HBSS, based on CASA

[

Nakatani

et al., 1995

]

. Bi-HBSS extracts speech from a mixture

of sounds as follows (see part of Fig 3):

� Harmonic Fragment Extraction:

First, it extracts all harmonic fragments by trac-

ing harmonic structures of the input signal and the

direction of sound sources. It also calculates the

residue by subtracting all extracted harmonic frag-

ments in a wave form.

� Harmonic Grouping:

Next, harmonic fragments are grouped according

to the proximity of fundamental frequency and the

direction of sound sources.

The �rst two steps reconstruct harmonic structure

of original sound.

� Residue Substitution:

Finally, speech is reconstructed by substituting the

residue for non-harmonic parts.

Extensive experience with Bi-HBSS on various kinds

of benchmarks has given the following observations:

(1) The criteria of the proximity for harmonic group-

ing depend on the allocation of speakers and the

characteristics of successive processing.

Usually the proximity in the direction of speakers

plays an important role. more than 45

�

. However,

the sensitivity or resolution of direction is about

20

�

[

Nakatani et al., 1995

]

, because the direction

of speakers is calculated by the interaural di�er-

ence in time and intensity. When more speakers

utter at di�erent places, the di�erence of direction

becomes less than 20

�

and thus directional infor-

mation becomes useless.

(2) Which part of the residue is used for residue substi-

tution depends on the characteristics of successive

applications

[

Nakatani and Okuno, 1998

]

.

Therefore, additional framework is needed to apply Bi-

HBSS to the Challenge.

Blind source separation, or, independent component

analysis is an opposite approach to CASA, and solves the

problem by signal processing techniques. It is often said

that blind source separation does not use such auditory

clues. Murata and Ikeda invented a new algorithm \on-

line algorithm" for blind source separation and applied it

to separate each speeches from a mixture of two speeches

with successful results

[

Murata and Ikeda, 1998

]

.

2.1 Blind Source Separation

Blind source separation is sketched roughly. Let

source signals consisting of n components (sound



sources) be denoted by the vector (1), and observed sig-

nals by n sensors (microphones) be denoted by the vector

(2) speci�ed as below:

s(t) = (s

1

(t); � � � ; s

n

(t))

T

; t = 0; 1; 2; : : : (1)

x(t) = (x

1
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n

(t))

T
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Each component of s(t) is assumed to be independent

of each other, that is, the joint density function of the

signals is factorized by their marginal density function

p(s
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In addition, observations are assumed to be linear

mixtures of source signals:

x(t) = As(t)

Note that A is an unknown linear operator.

Let a

aj

(� ) be a unit impulse response from source j

to sensor i with time delay � . The observation at sensor

i can be represented as
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The goal of blind source separation is to �nd a lin-

ear operator B(t), such that the components of recon-

structed signals

y(t) = B � x(t)

are mutually independent, without knowing the opera-

tor A(t) and the probability distribution of source signal

s(t).

Ideally we expect B(t) to be the inverse operator of

A(t), but there remains inde�niteness of scaling factors

and permutation due to lack of information on the am-

plitude and the order of the source signals.

\On-line ICA (Independent Component Analysis)" al-

gorithms

[

Murata and Ikeda, 1998

]

separates source sig-

nals from a mixture of signals in the following steps:

(1) First, mixed signals are converted to the spectro-

gram, or to time-frequency domain. That is, the

windowed-Fourier transformation is applied to ob-

served signals by shifting Hamming window of 128

points.

(2) Then, blind source separation algorithm is applied

to each frequency channel independently. That is,

on-line ICA (Independent Component Analysis) is

applied to the frequency components of the non-

symmetric 65 points.

(3) Next, the correspondence of separated components

in each frequency is determined based on temporal

structure of signals.

Since the output of ICA carries ambiguities in per-

mutation of the frequent components and in the

amplitudes, the permutation of components is de-

termined on the basis of correlation between their

envelops.

(4) Finally, separated spectrogram of the source signals

is constructed.

Now, we apply on-line ICA to the same benchmark

sets as Okuno et al.

[

Okuno et al., 1996

]

to get better

knowledge on two opposite approaches.

2.2 Preliminary Experiments

To evaluate the performance of separation, we adopt

the same three benchmark sets that are used by Okuno

et al.

[

Okuno et al., 1996

]

. The �rst benchmark set,

called Double, consists of 500 two-sound mixtures of

women's utterance of Japanese words. The �rst speaker

utters at 30

�

to the left from the center and the sec-

ond speaker utters at 30

�

to the right from the center.

The second benchmark set, called Triple, consists of

three sounds, that is, two sounds used in the �rst bench-

mark set and additional intermittent harmonic sounds

that comes from the center. The power of additional

sound is about half of the average power of two women's

utterances. The third benchmark set, calledTriple', dif-

fers from the second one in that the power of additional

sound is almost the same as the average power of two

women's utterance. Each mixed sound is recorded by a

pair of binaural microphones in two channels. Sampling

rate is 12KHz and data size is 16 bit. Most mixed sounds

are created by using Head-Related Transfer Functions.

We also use the same automatic speech recognition

system, called HMM-LR, a hidden Markov Model based

system

[

Kita et al., 1990; Okuno et al., 1996

]

. HMM-LR

is also used for the Challenge.

The recognition performance is measured by the er-

ror reduction rate for the 1-best and 10-best recognition.

First, the error rate caused by interfering sounds is de-

�ned as follows. Let the n-best recognition rate be the

cumulative accuracy of recognition up to the n-th can-

didate, denoted by CA

(n)

. The su�x, org, sep, or mix

is added to the recognition performance of the single

unmixed original sounds, mixed sounds, and separated

sounds, respectively. The error rate caused by interfering

sounds, E

(n)

, is calculated as E

(n)

= CA

(n)

org

� CA

(n)

mix

.

The error reduction rate for the n-best recognition,

R

(n)

sep

, is calculated as follows:

R

(n)

sep

=

CA

(n)

sep

� CA

(n)

mix

CA

(n)

org

� CA

(n)

mix

� 100 =

CA

(n)

seg

� CA

(n)

mix

E

� 100:

Figure 1 and Figure 2 show the error reduction rates

for the 1-best and 10-best recognition by Bi-HBSS (cre-

ated from the data in

[

Okuno et al., 1996

]

), and blind

source separation, respectively.
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Figure 1: Error reduction rates for the 1-best/10-best

recognition of each speech by Bi-HBSS

2.3 Observations

(1) Blind source separation gives better error reduc-

tion rates for the benchmark set Double, but

quite worse ones for Triple and Triple'. These

poor results on the benchmark of three sounds are

quite reasonable, because blind source separation

assumes that the number of sound sources is equal

to or less than the number of microphones.

Another restriction of blind source separation, that

is, sound sources are independent of each other,

does not inuence on these benchmark sets. How-

ever, when a mixture of musical signals that con-

tains harmony are manipulated by blind source sep-

aration, we must be careful about this restriction.

(2) Blind source separation needs attributes of sounds

to dissolve ambiguities of the order of independent

components and their amplitudes to reconstruct

each original sound.

In other words, simple signal processing, or mathe-

matical treatment is not enough to separate sounds

from a mixture of sounds.

(3) The essential issue of I-6 can be paraphrased that

what kinds of attributes should be used to recon-

struct original sounds?

In blind source separation, common amplitude

modulation (AM) is used to reconstruct original

sounds. This reconstruction process is considered

similar to harmonic grouping of Bi-HBSS. Bi-HBSS

uses fundamental frequency (pitch) and the direc-

tion of sound source as the criteria of grouping.

(4) The recognition rate of separated speeches by blind

source separation is not so a�ected by the distance

between speakers unlike the case of Bi-HBSS.

(5) To fuse sound attributes, common sound represen-

tation is required as Nakatani and Okuno pointed

out

[

Nakatani and Okuno, 1998

]

.
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Figure 2: Error reduction rates for the 1-best/10-best

recognition of each speech by Blind Source Separation
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3 System Integration

To attack the Challenge, Bi-HBSS is not only up-

graded but also integrated with sound source separation.

First, the longer-term analysis of harmonic structure

and direction of sound source is incorporated in the

tracking mechanism of Bi-HBSS. The direction of a frag-

ment is de�ned as stable when the direction is contin-

uously (for more than 75 ms) within a limited region

(within 0:41 ms). Once a stable direction is obtained for

a fragment, the most recently stable direction becomes

the direction of the fragment at the time-frame. This

long-term analysis leads to a reliable direction informa-

tion, because sound interference often makes a short-

term analysis erroneous. In addition, frequency modula-

tion (FM) of each component of a harmonic structure is

analyzed so that the harmonic structure becomes more

accurate. These modi�cations are motivated by the fact

that blind source separation uses common AM to re-

construct speech signals. The details are described in

[

Nakatani and Okuno, 1999

]

.

Second, Bi-HBSS and blind source separation are in-



tegrated to exploit each merits and overcome each weak

points. The idea is very simple. Since blind source sep-

aration can separate better than Bi-HBSS for a mixture

of two sounds, Bi-HBSS generates a mixture of sounds.

The whole system is depicted in Fig 3.

The ow of processing is roughly sketched as below:

(1) When Bi-HBSS gets input signals, its Harmonic

Fragment Extractor extracts harmonic fragments,

which Harmonic Grouping Agent groups to har-

monic groups.

(2) A newly designed agent, Coordinator, always

watches the processing of Harmonic Grouping

Agent and bookkeeping information on harmonic

groups. When Harmonic Grouping Agent �nishes

all processing, Coordinator generates a mixture of

two speeches, and gives it to blind source separa-

tion. This mixture usually consists of the latestly

separated two speeches. As described in Section

2, Independent Component Extractor extracts in-

dependent components and Permutation/Grouping

Agent calculates a correct combination of indepen-

dent components and reconstructs speeches. In this

stage, information on independent components is

fed back to Coordinator, which bookkeeps the in-

formation. Since the information supplied to Co-

ordinator may have di�erent formats, Coordinator

converts it to a standard format by using ontology

[

Nakatani and Okuno, 1998

]

.

(3) Finally, speeches separated by Bi-HBSS and blind

source separation are given to Conict Resolver,

which checks whether speech separated by blind

source separation has a corresponding speech sep-

arated by Bi-HBSS. If found, Bi-HBSS's output is

adopted. Otherwise, Conict Resolver calls Har-

monic Grouping Agent to do regrouping according

to blind source separation.

Since a mixture of two speeches Coordinator gives

to blind source separation may contains errors, the

system pays more respects to Bi-HBSS.

Note that their integration is possible in spite of their

opposite approaches, because there are many common

functionalities between these two systems.

4 Experiments

The benchmark set used for the evaluation consists

of 200 mixture of three utterances of Japanese words.

The mixture of sounds are created analytically in the

same manner as

[

Okuno et al., 1996

]

. Of course, a small

set of benchmarks were actually recorded in an anechoic

room. We con�rmed that the synthesized and actually

recorded data do not cause a signi�cant di�erence in

speech recognition evaluation.

(1) All speakers are located at about 2m from a pair

of microphones installed on a dummy head.

(2) The �rst speaker is a woman located at 30

�

to the

left from the center.
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Figure 4: Error reduction rates for the 1-best/10-best

recognition of each speech by Integrated System and Bi-

HBSS

(3) The second speaker is a man located in the center.

(4) The third speaker is a woman located at 30

�

to the

right from the center.

(5) The order of utterance is from left to right with

about 150ms delay.

This delay is inserted so that the mixture of sounds

was to be recognized without separation.

(6) The data is sampled by 12KHz and the gain of

mixture of sounds is reduced if the data overows

in 16 bit. For most mixtures, the power is reduced

by 2 to 3 dB.

The error reduction rates for the 1-best and 10-best

recognition of each speech by integrated system and Bi-

HBSS are shown in Fig 4. By integrating blind source

separation, the error reduction rates for speaker 2 and 3

are improved. Since these two speakers are within 30

�

from the microphones and the sensitivity of the direction

in Bi-HBSS is about 20

�

, the direction of speakers is

sometimes incorrect and thus the error of recognition is

not recovered so much. In average, 37.1% and 64.8%

of errors in recognition is reduced. The error reduction

rates by Bi-HBSS is better than that in Fig 1, since new

tracing mechanism is incorporated in Bi-HBSS.

5 Discussion and Future Work

(1) Integration of existing systems with monir revision

can reduce 64.8% of errors in recognition in aver-

age. We think that the current Bi-HBSS designed

with multi-agent systems

[

Nakatani et al., 1995

]

and the architecture for integration with ontology,

or common representation of sounds, is proved ef-

fective in audition research.

(2) One of the most important future work is to apply

bottom-up and top-down processing to the Chal-

lenge. We are currently designing bottom-up and



top-down control for the Challenge based on Bi-

HBSS.

(3) If the direction of speaker is precisely obtained, the

quality of separated speeches can be improved by a

�lter function. Our preliminary experiments on the

same benchmark set show that the error reduction

rates for the 1-best and 10-best recognition of the

�rst speaker are 58.8% and 87.6%, respectively.

Directional information can be extracted by bin-

aural input

[

Blauert, 1983; Bodden, 1993

]

or by

microphone arrays

[

Inoue et al., 1997; Stadler and

Rabinowitz, 1993

]

.

(4) Filter can extract one speech and the remaining

signals are severely distorted. Therefore, this ap-

proach is more adequate to \cocktail party" com-

puter than\Prince Shotoku" computer that can lis-

ten to several things simultaneously.

(5) Directional information can be obtained by vision.

Fusing visual and auditory information is an inter-

esting research theme. By detecting a new audi-

tory event by vision or audition, a camera moves

toward the sound source or auditory system ex-

tracts sound that comes from the speci�c direction.

Multi-modal cocktail party computer is an impor-

tant and exciting future work.

(6) Other future work includes application of the Chal-

lenge, and design of more universal media ontology

to make integration of visual aud auditory process-

ings easier and more feasible.

(7) If the Challenge is revised as follows, another in-

teresting research issues emerge.

How much the error rates for recognition

of separated speeches can be reduced by

using vision?

Okuno et al. reported that incorporating visual in-

formation on the sound source direction improves

the error reduction rates

[

Okuno et al, 1999

]

. Nak-

agawa et al. also reported that visual tracking is

also improved by using auditory information on the

sound source direction

[

Nakagawa et al., 1999

]

.

6 Conclusion

In this paper, we present the role of sound attributes

as an additional issue concerning the Challenge \Under-

standing Three Simultaneous Speeches". There often

says that computational auditory scene analysis exploits

sound attributes in separating sounds from a mixture

of sounds, while blind source separation does not. We

investigate blind source separation and show that blind

source separation also uses sound attributes in separat-

ing speeches and thus it is possible to integrate both

systems for speech separation. Then we integrate Bi-

HBSS and blind source separation systems to attack the

Challenge. The average error reduction rates for the 1-

best and 10-best recognition in the Challenge is 37.1%

and 64.8%, respectively. We believe that our results will

encourage AI community to engage in audition research

more actively.
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