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Abstract

This paper reports the issues and results of
AT Challenge: “Understanding Three Simul-
taneous Speeches”. First, the issues of the
Challenge are revisited. We emphasis the
importance of information fusion of various
attributes of speeches (sounds) in separating
speeches from a mixture of sounds. This em-
phasis is supported by comparing two meth-
ods of speech separation; computational au-
ditory scene analysis approach that employs
the attributes of sound sources and sound
transmitting channel, and blind source sep-
aration approach that dispenses with these
attributes. Although these two approaches
are usually considered as opposite with re-
gards to whether sound attributes is used or
not, we conclude that they differ in the ways
of using sound attributes. Next, a new al-
gorithm for information fusion is proposed.
Sound attributes extracted by tracking har-
monic structures and sound source directions
as well as by independent component anal-
ysis are fused according to sound ontology.
Finally, the error reduction rate of the 1-
best/10-best word recognition of each speaker
performed on 200 mixtures of two women’s
and one man’s utterances of an isolated word
is reported.

1 Introduction

“Listening to several things simultaneously”, or
“Price Shotoku” computer after Japanese legend, is
a next goal to automatic speech recognition systems
in Al-related audition research [Cooke et al., 1993;
Nakatani et al., 1994; Okuno et al., 1995; Rosenthal
and Okuno, 1998], since automatic speech recognition

systems have been widely available recently on per-
sonal computers and some commercial personal com-
puters come equipped with automatic speech recogni-
tion system. At a crowded party, people can attend one
conversation and switch to another. This capability is
well known as “cocktail party effect”. However, psy-
choacoustic observation proves that people with normal
hearing capability can listen to at most two things si-
multaneously [Kashino and Hirahara, 1996]. Therefore,
“listening to several things simultaneously” is a chal-
lenging problem in audition research, and is expected to
augment human’s auditory capability or create new ap-
plication areas in sound processing, in particular, sound
recognition systems.

The AI Challenge “Listening to Three Simultaneous
Speeches” (hereafter, the Challenge) proposed at IJCAI-
97 by Okuno et al. [Okuno et al, 1997] is important in
modeling computer audition, because most researches in
sound processing assume some specific sounds as input.
This assumption may not hold in the real-world, because
we usually hear a mixture of sounds, not a single sound.
The Challenge is restated as follows:

e Speakers: The distance between a microphone
and a speaker is at least 1.4m. Three speakers ut-
ter a word simultaneously. They do not have to
start at once.

e Microphones: At most two microphones are used.

e Performance Measurement: Error reduction
rates for the 1-best and 10-best of recognition.

e System Design: The system should be extensible
and adaptive for future challenging problems such
as moving talkers or additional speakers.

There may be two main approaches to attack the
Challenge, that is, understanding three simultaneous
speeches. One is the cascaded approach which first sepa-
rates each speech from a mixture of sounds and then
recognize each separated speech by automatic speech
recognition system. The other is the integrated approach



which exploits speech separation and speech recognition
in concurrent and integrated ways [Cooke et al., 1993;
Ellis, 1996; Lesser et al., 1993].

In this paper, we focus on the cascaded approach to-
ward the Challenge. The cascaded approach consists of
two main processes; one is to separate a speech from a
mixture of sounds and the other is to recognize each sep-
arated speech by automatic speech recognition system.

Okuno et al. [Okuno et al, 1997] assume the cascaded
approach and investigate the issues of the Challenge from
the following aspects:

I-1. robust automatic speech recognition [Luo and Den-
bigh, 1994]

I-2. signal processing [Murata and Ikeda, 1998]

1-3. general sound understanding, or computational au-
ditory scene analysis (CASA)

I-4. psychoacoustics [Kashino and Hirahara, 1996]

Since the Challenge involves understanding arbitrary
sound which is one of the main topics of computational
auditory scene analysis (CASA) [Cooke et al., 1993;
Nakatani et al., 1994; Rosenthal and Okuno, 1998], it
is also considered as a challenge for CASA.

Nakatani and Okuno point out another issue from the
view]point of sound representation [Nakatani and Okuno,
1998|.

I-5. common sound representation, or, sound ontology.

They proposed to use common representation of sounds,
or sound ontology, in the following three purposes:

(1) to integrate sound separation systems such as
speech and music,

(2) to interface sound separation systems with applica-
tions such as automatic speech recognition systems,
and

(3) to integrate bottom-up and top-down processings
in sound separation.

In this paper, we point out another issues in sound
representation and utilization of sound source attributes,
and present an integrated systems that fuses sound at-
tributes extracted by different sound separation systems.
The proposed system is then applied to the Challenge
and the results are reported.

The rest of this paper is organized as follows: Sec-
tion 2 revisits the issues of the Challenge. Section 3
presents the integrated systems to attack the Challenge,
and Section 4 shows preliminary results. Discussion and
Concluding remarks are given in Section 5 and 6.

2 Research Issues Revisited
Consider the additional issue for speech separation:
I-6. role of sound attributes in sound source separation

There have been a lot of dispute on whether sound at-
tributes play an important role in separating speeches
from a mixture of sounds [Rosenthal and Okuno, 1998].

Usually, CASA uses various sound attributes such as
common onset, offset, AM (amplitude modulation), FM
(frequency modulation), formants, and sound source di-
rection as clues to separate speeches from a mixture of
sounds. For example, Nakatani et al. developed speech
separation system, Bi-HBSS, based on CASA [Nakatani
et al., 1995]. Bi-HBSS extracts speech from a mixture
of sounds as follows (see part of Fig 3):

e Harmonic Fragment Extraction:
First, it extracts all harmonic fragments by trac-
ing harmonic structures of the input signal and the
direction of sound sources. It also calculates the
residue by subtracting all extracted harmonic frag-
ments in a wave form.

e Harmonic Grouping:
Next, harmonic fragments are grouped according
to the proximity of fundamental frequency and the
direction of sound sources.

The first two steps reconstruct harmonic structure
of original sound.

¢ Residue Substitution:

Finally, speech is reconstructed by substituting the
residue for non-harmonic parts.

Extensive experience with Bi-HBSS on various kinds
of benchmarks has given the following observations:

(1) The criteria of the proximity for harmonic group-

ing depend on the allocation of speakers and the
characteristics of successive processing.
Usually the proximity in the direction of speakers
plays an important role. more than 45°. However,
the sensitivity or resolution of direction is about
20° [Nakatani et al., 1995], because the direction
of speakers is calculated by the interaural differ-
ence in time and intensity. When more speakers
utter at different places, the difference of direction
becomes less than 20° and thus directional infor-
mation becomes useless.

(2) Which part of the residue is used for residue substi-
tution depends on the characteristics of successive
applications [Nakatani and Okuno, 1998].

Therefore, additional framework is needed to apply Bi-
HBSS to the Challenge.

Blind source separation, or, independent component
analysis is an opposite approach to CASA, and solves the
problem by signal processing techniques. It is often said
that blind source separation does not use such auditory
clues. Murata and Ikeda invented a new algorithm “on-
line algorithm” for blind source separation and applied it
to separate each speeches from a mixture of two speeches
with successful results [Murata and Ikeda, 1998].

2.1 Blind Source Separation

Blind source separation is sketched roughly. Let
source signals consisting of n components (sound



sources) be denoted by the vector (1), and observed sig-
nals by n sensors (microphones) be denoted by the vector
(2) specified as below:

S(t) = (Sl(t)ﬂ"'asn(t))Ta t:0,1,2,... (1)
ili(t) = (:Cl(t)a"'wrn(t))T: t:0,1,2,... (2)

Each component of s(t) is assumed to be independent
of each other, that is, the joint density function of the
signals is factorized by their marginal density function

p(sl(t)a Tty Sn(t)) = p(Sl(t)) Xoeee X p(sn(t))'

In addition, observations are assumed to be linear
mixtures of source signals:

x(t) = As(t)

Note that A is an unknown linear operator.

Let a,;(7) be a unit impulse response from source j
to sensor ¢ with time delay 7. The observation at sensor
7 can be represented as

xz(t) = (Z @ik * Sk(t)> )
k

T’Ill ax

where, a;j, % si(t) = Z air(T) * sp(t — )
r=0

Thus, A can be represented in matrix form as

a1 (t) aln(t)
am={ s
an1(t) A ()

The goal of blind source separation is to find a lin-
ear operator B(t), such that the components of recon-
structed signals

y(t) = B+ =(t)

are mutually independent, without knowing the opera-
tor A(t) and the probability distribution of source signal
s(t).

Ideally we expect B(t) to be the inverse operator of
A(t), but there remains indefiniteness of scaling factors
and permutation due to lack of information on the am-
plitude and the order of the source signals.

“On-line ICA (Independent Component Analysis)” al-
gorithms [Murata and Ikeda, 1998] separates source sig-
nals from a mixture of signals in the following steps:

(1) First, mixed signals are converted to the spectro-
gram, or to time-frequency domain. That is, the
windowed-Fourier transformation is applied to ob-
served signals by shifting Hamming window of 128
points.

(2) Then, blind source separation algorithm is applied
to each frequency channel independently. That is,
on-line ICA (Independent Component Analysis) is
applied to the frequency components of the non-
symmetric 65 points.

(3) Next, the correspondence of separated components
in each frequency is determined based on temporal
structure of signals.

Since the output of ICA carries ambiguities in per-
mutation of the frequent components and in the
amplitudes, the permutation of components is de-
termined on the basis of correlation between their
envelops.

(4) Finally, separated spectrogram of the source signals
is constructed.

Now, we apply on-line ICA to the same benchmark
sets as Okuno et al. [Okuno et al., 1996] to get better
knowledge on two opposite approaches.

2.2 Preliminary Experiments

To evaluate the performance of separation, we adopt
the same three benchmark sets that are used by Okuno
et al. [Okuno et al., 1996]. The first benchmark set,
called Double, consists of 500 two-sound mixtures of
women’s utterance of Japanese words. The first speaker
utters at 30° to the left from the center and the sec-
ond speaker utters at 30° to the right from the center.
The second benchmark set, called Triple, consists of
three sounds, that is, two sounds used in the first bench-
mark set and additional intermittent harmonic sounds
that comes from the center. The power of additional
sound is about half of the average power of two women’s
utterances. The third benchmark set, called Triple’, dif-
fers from the second one in that the power of additional
sound is almost the same as the average power of two
women’s utterance. Each mixed sound is recorded by a
pair of binaural microphones in two channels. Sampling
rate is 12KHz and data size is 16 bit. Most mixed sounds
are created by using Head-Related Transfer Functions.

We also use the same automatic speech recognition
system, called HMM-LR, a hidden Markov Model based
system [Kita et al., 1990; Okuno et al., 1996]. HMM-LR
is also used for the Challenge.

The recognition performance is measured by the er-
ror reduction rate for the 1-best and 10-best recognition.
First, the error rate caused by interfering sounds is de-
fined as follows. Let the n-best recognition rate be the
cumulative accuracy of recognition up to the n-th can-
didate, denoted by CA™. The suffix, org, sep, or mix
is added to the recognition performance of the single
unmixed original sounds, mixed sounds, and separated

sounds, respectively. The error rate caused by interfering
sounds, £(") is calculated as £(") = C.AS];; — CAS:Z-)E.

The error reduction rate for the n-best recognition,
Rg’;}, is calculated as follows:

cA® —cAlm CA® —cAlm

(n) — sep mix 100 = seg mizx % 100.
oA —eAl) £

Figure 1 and Figure 2 show the error reduction rates
for the 1-best and 10-best recognition by Bi-HBSS (cre-
ated from the data in [Okuno et al., 1996]), and blind
source separation, respectively.
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Figure 1: Error reduction rates for the 1-best/10-best
recognition of each speech by Bi-HBSS

2.3 Observations

(1) Blind source separation gives better error reduc-
tion rates for the benchmark set Double, but
quite worse ones for Triple and Triple’. These
poor results on the benchmark of three sounds are
quite reasonable, because blind source separation
assumes that the number of sound sources is equal
to or less than the number of microphones.

Another restriction of blind source separation, that
is, sound sources are independent of each other,
does not influence on these benchmark sets. How-
ever, when a mixture of musical signals that con-
tains harmony are manipulated by blind source sep-
aration, we must be careful about this restriction.

(2) Blind source separation needs attributes of sounds
to dissolve ambiguities of the order of independent
components and their amplitudes to reconstruct
each original sound.

In other words, simple signal processing, or mathe-

matical treatment is not enough to separate sounds
from a mixture of sounds.

(3) The essential issue of I-6 can be paraphrased that

what kinds of attributes should be used to recon-
struct original sounds?
In blind source separation, common amplitude
modulation (AM) is used to reconstruct original
sounds. This reconstruction process is considered
similar to harmonic grouping of Bi-HBSS. Bi-HBSS
uses fundamental frequency (pitch) and the direc-
tion of sound source as the criteria of grouping.

(4) The recognition rate of separated speeches by blind
source separation is not so affected by the distance
between speakers unlike the case of Bi-HBSS.

(5) To fuse sound attributes, common sound represen-
tation is required as Nakatani and Okuno pointed
out [Nakatani and Okuno, 1998].
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Figure 2: Error reduction rates for the 1-best/10-best
recognition of each speech by Blind Source Separation
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Figure 3: Integrated Systems with Bi-HBSS and Blind
Source Separation

3 System Integration

To attack the Challenge, Bi-HBSS is not only up-
graded but also integrated with sound source separation.

First, the longer-term analysis of harmonic structure
and direction of sound source is incorporated in the
tracking mechanism of Bi-HBSS. The direction of a frag-
ment is defined as stable when the direction is contin-
uously (for more than 75 ms) within a limited region
(within 0.41 ms). Once a stable direction is obtained for
a fragment, the most recently stable direction becomes
the direction of the fragment at the time-frame. This
long-term analysis leads to a reliable direction informa-
tion, because sound interference often makes a short-
term analysis erroneous. In addition, frequency modula-
tion (FM) of each component of a harmonic structure is
analyzed so that the harmonic structure becomes more
accurate. These modifications are motivated by the fact
that blind source separation uses common AM to re-
construct speech signals. The details are described in
[Nakatani and Okuno, 1999].

Second, Bi-HBSS and blind source separation are in-



tegrated to exploit each merits and overcome each weak
points. The idea is very simple. Since blind source sep-
aration can separate better than Bi-HBSS for a mixture
of two sounds, Bi-HBSS generates a mixture of sounds.
The whole system is depicted in Fig 3.

The flow of processing is roughly sketched as below:

(1) When Bi-HBSS gets input signals, its Harmonic
Fragment Extractor extracts harmonic fragments,
which Harmonic Grouping Agent groups to har-
monic groups.

(2) A newly designed agent, Coordinator, always
watches the processing of Harmonic Grouping
Agent and bookkeeping information on harmonic
groups. When Harmonic Grouping Agent finishes
all processing, Coordinator generates a mixture of
two speeches, and gives it to blind source separa-
tion. This mixture usually consists of the latestly
separated two speeches. As described in Section
2, Independent Component Extractor extracts in-
dependent components and Permutation/Grouping
Agent calculates a correct combination of indepen-
dent components and reconstructs speeches. In this
stage, information on independent components is
fed back to Coordinator, which bookkeeps the in-
formation. Since the information supplied to Co-
ordinator may have different formats, Coordinator
converts it to a standard format by using ontology
[Nakatani and Okuno, 1998].

(3) Finally, speeches separated by Bi-HBSS and blind
source separation are given to Conflict Resolver,
which checks whether speech separated by blind
source separation has a corresponding speech sep-
arated by Bi-HBSS. If found, Bi-HBSS’s output is
adopted. Otherwise, Conflict Resolver calls Har-
monic Grouping Agent to do regrouping according
to blind source separation.

Since a mixture of two speeches Coordinator gives
to blind source separation may contains errors, the
system pays more respects to Bi-HBSS.

Note that their integration is possible in spite of their
opposite approaches, because there are many common
functionalities between these two systems.

4 Experiments

The benchmark set used for the evaluation consists
of 200 mixture of three utterances of Japanese words.
The mixture of sounds are created analytically in the
same manner as [Okuno et al., 1996]. Of course, a small
set of benchmarks were actually recorded in an anechoic
room. We confirmed that the synthesized and actually
recorded data do not cause a significant difference in
speech recognition evaluation.

(1) All speakers are located at about 2m from a pair
of microphones installed on a dummy head.

(2) The first speaker is a woman located at 30° to the
left from the center.
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Figure 4: Error reduction rates for the 1-best/10-best
recognition of each speech by Integrated System and Bi-
HBSS

(3) The second speaker is a man located in the center.

(4) The third speaker is a woman located at 30° to the
right from the center.

(5) The order of utterance is from left to right with
about 150ms delay.
This delay is inserted so that the mixture of sounds
was to be recognized without separation.

(6) The data is sampled by 12KHz and the gain of
mixture of sounds is reduced if the data overflows
in 16 bit. For most mixtures, the power is reduced
by 2 to 3 dB.

The error reduction rates for the 1-best and 10-best
recognition of each speech by integrated system and Bi-
HBSS are shown in Fig 4. By integrating blind source
separation, the error reduction rates for speaker 2 and 3
are improved. Since these two speakers are within 30°
from the microphones and the sensitivity of the direction
in Bi-HBSS is about 20°, the direction of speakers is
sometimes incorrect and thus the error of recognition is
not recovered so much. In average, 37.1% and 64.8%
of errors in recognition is reduced. The error reduction
rates by Bi-HBSS is better than that in Fig 1, since new
tracing mechanism is incorporated in Bi-HBSS.

5 Discussion and Future Work

(1) Integration of existing systems with monir revision
can reduce 64.8% of errors in recognition in aver-
age. We think that the current Bi-HBSS designed
with multi-agent systems [Nakatani et al., 1995]
and the architecture for integration with ontology,
or common representation of sounds, is proved ef-
fective in audition research.

(2) One of the most important future work is to apply
bottom-up and top-down processing to the Chal-
lenge. We are currently designing bottom-up and



top-down control for the Challenge based on Bi-
HBSS.

(3) If the direction of speaker is precisely obtained, the
quality of separated speeches can be improved by a
filter function. Our preliminary experiments on the
same benchmark set show that the error reduction
rates for the 1-best and 10-best recognition of the
first speaker are 58.8% and 87.6%, respectively.

Directional information can be extracted by bin-
aural input [Blauert, 1983; Bodden, 1993] or by
microphone arrays [Inoue et al., 1997; Stadler and
Rabinowitz, 1993].

(4) Filter can extract one speech and the remaining
signals are severely distorted. Therefore, this ap-
proach is more adequate to “cocktail party” com-
puter than “Prince Shotoku” computer that can lis-
ten to several things simultaneously.

(5) Directional information can be obtained by vision.
Fusing visual and auditory information is an inter-
esting research theme. By detecting a new audi-
tory event by vision or audition, a camera moves
toward the sound source or auditory system ex-
tracts sound that comes from the specific direction.
Multi-modal cocktail party computer is an impor-
tant and exciting future work.

(6) Other future work includes application of the Chal-
lenge, and design of more universal media ontology
to make integration of visual aud auditory process-
ings easier and more feasible.

(7) If the Challenge is revised as follows, another in-
teresting research issues emerge.

How much the error rates for recognition
of separated speeches can be reduced by
using vision?

Okuno et al. reported that incorporating visual in-
formation on the sound source direction improves
the error reduction rates [Okuno et al, 1999]. Nak-
agawa et al. also reported that visual tracking is
also improved by using auditory information on the
sound source direction [Nakagawa et al., 1999].

6 Conclusion

In this paper, we present the role of sound attributes
as an additional issue concerning the Challenge “Under-
standing Three Simultaneous Speeches”. There often
says that computational auditory scene analysis exploits
sound attributes in separating sounds from a mixture
of sounds, while blind source separation does not. We
investigate blind source separation and show that blind
source separation also uses sound attributes in separat-
ing speeches and thus it is possible to integrate both
systems for speech separation. Then we integrate Bi-
HBSS and blind source separation systems to attack the
Challenge. The average error reduction rates for the 1-
best and 10-best recognition in the Challenge is 37.1%
and 64.8%, respectively. We believe that our results will

encourage Al community to engage in audition research
more actively.
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