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Abstract— In this article, we propose an on-line
algorithm for Blind Source Separation of speech sig-
nals, which is recorded in a real environment. This
on-line algorithm makes it possible to trace the chang-
ing environment. The idea is to apply some on-line al-
gorithm in the time-frequency domain. We show some
results of experiments.

I. Introduction

Recently, blind source separation (BSS) has attracted
a great deal of attention in the engineering field. BSS
is a problem to separate the independent sources from
mixed observations, where mixing process is unknown.
It is widely noticed that there are many possible ap-
plications such as noise reduction, removing crosstalk
in telecommunication, preprocessing for multi-probed
radar/sonar, analyzing biomedical data.

As a fundamental research, many algorithms have
been developed for instantaneous mixtures, where only
simple mixing process without time delay is consid-
ered. They have shown very good abilities to separate
signals which are suitably thought as non-time delayed
mixing, such as MEG (Magnetencephalograph) data.
However, for separating acoustic signals recorded in
a real environment, convolutive mixture have to be
taken account of.

We have proposed a BSS method for temporal struc-
tured signals, such as speech signals recorded in a real
environment [4, 8]. Our basic idea is as follows. First
we transform mixed signals to the time-frequency do-
main, which is familiar with the name of spectrogram.
Then we apply instantaneous BSS algorithm for each
frequency channel independently. Next, we determine
the correspondence of separated components in each
frequency based on temporal structure of signals, and
construct separated spectrogram of the source signals.

In this paper, we extend our algorithm for separat-
ing convolutive signals to on-line version. It aims at a
situation in which a person is speaking in a room and
moving around.

II. Blind Source Separation Problem

Here we give a formulation of the BSS problem.
Source signals are denoted by a vector

s(t) = (s1(t), · · · , sn(t))T , t = 0, 1, 2, . . . (1)

and we assume that each component of s(t) is indepen-
dent of each other. The independence of the sources
are defined by

p(s1(t), . . . , s1(t − τ), s2(t), . . . , sn(t − τ))

=
n∏
i

p(si(t), si(t − 1), . . . , si(t − τ)),
(2)

for any τ , that is, the joint distribution of signals can
be factorized by their marginals. Without loss of gen-
erality, we assume the source signal s(t) to be zero
mean.

Observations are represented by

x(t) = (x1(t), · · · , xn(t))T . (3)

They correspond to the recorded signals. In the basic
BSS problem, we assume that observations are linear
mixtures of source signals:

x(t) = As(t), (4)

where A is an unknown linear operator. A typical
example of linear operators is an n×n real valued ma-
trix, which represents non-delayed mixing, and various
learning algorithm are proposed for this setting (for
example, [3]). In the case of real-room recording, a
matrix of FIR filters is used as a linear operator [6, 9].
In this paper we focus on this problem, i.e.

x(t) = A ∗ s(t) =

(∑
k

aik ∗ sk(t)

)
,

where aik ∗ sk(t) =
τmax∑
τ=0

aik(τ)sk(t − τ),

(5)

The goal of BSS is to find a linear operator B such
that the components of the reconstructed signals

y(t) = Bx(t) (6)



are mutually independent, without knowing operator
A and the probability distribution of source signal s(t).
Ideally B should be the inverse of operator A, however,
because of lack of information about the amplitude
of the source signals and their order, there remains
indeterminacy of permutation and dilation factors

III. Proposed Algorithm

It is known that the human voice is stationary for a
period shorter than a few 10msecs [5]. If it is longer
than a few 10msecs and around 100msec, the frequency
components of the speech will change its structure,
and is not stationary. Therefore, first, we apply the
windowed-Fourier transform to convolutive mixed sig-
nals (see Figure 1) and obtain the spectrogram,

x̂(ω, ts) =
∑

t

e−jωtx(t)w(t − ts), (7)

ω = 0, 1
N 2π, . . . , N−1

N 2π, ts = 0, ∆T, 2∆T, . . .

where ω, N and ts denote the frequency, the num-
ber of points of the discrete Fourier transform and the
window position, respectively, w is a window function
(we used Hamming window) and ∆T is the shifting
interval of moving windows.

With an appropriate window length, Equation (5)
is well approximated as

x̂(ω, ts) = Â(ω)ŝ(ω, ts), (8)

where Â(ω) is the Fourier transform of operator A(t),
and ŝ(ω, ts) is the spectrogram of s(t). This shows a
convolutive mixture is a simple instantaneous mixture
for a fixed ω.

For extracting independent components from the
mixed signals in each frequency channel, we use a re-
current neural network architecture [7, 2], in which the
output vector is described as

û(ω, ts) = x̂(ω, ts) − B(ω, ts)û(ω, ts),

where B(ω, ts) is a matrix, whose ij element is a con-
nection from the j-th component of output û(ω, ts)
to the i-th component of input x̂(ω, ts) and whose
diagonal elements are fixed to 0, that means there
is no self-recurrent connection in the network. Since
û(ω, ts) = (B(ω, ts) + I)−1x̂(ω, ts), the source signals
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Figure 1: Windowed-Fourier transform (spectrogram)

are completely extracted when A(ω) = I + B(ω, ts),
where I is the identity matrix.

In the experiment described below, we adopt the
following learning rule (see [1] for derivation of the
algorithm and its stability analysis),

B(ω, ts + ∆T ) =
B(ω, ts) − η (B(ω, ts) + I) (diag (φ(z)z∗) − φ(z)z∗) ,

z = û(ω, ts) (9)

where diag(·) makes a diagonal matrix with the di-
agonal elements of its argument, ∗ denotes complex
conjugate, and

φ(z) = tanh(Re(z)) + i · tanh(Im(z)) (10)

which operates component-wise to a column vector [9].
With using estimated matrix B(ω, ts)+I and one inde-
pendent component we obtain separated independent
components of observation in each frequency as

v̂ω(ts; i) = (B(ω, ts) + I)(0, . . . , ûi(ω, ts), . . . , 0)T .
(11)

Because of inherent indeterminacy of BSS problem,
correspondence of v̂ω(ts; i) with another frequency is
ambiguous. In our approach, individually separated
frequency components are combined again based on
the common temporal structure of original source sig-
nals. We assume that different frequency components
from the same signal are under the influence of a sim-
ilar modulation in amplitude. Defining an envelope
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Figure 2: Construct separated spectrogram



making operator by

E v̂ω(ts; i) =
1

2M

ts+M∑
t′s=ts−M

|v̂ω(t′s; i)|, (12)

where M is a positive constant, we find a permu-
tation σω(i) which maximizes correlation between
E v̂ω(ts; σω(i)) and Eŷ(ts; i) = E∑ω′ v̂ω′(ts; σω′(i)) in-
ductively (see Figure 2). For more detailed explana-
tion about the practical implementation, see [4, 8].

IV. Experiment

We applied the algorithm to a mixture of speech sig-
nals. Figure 3 shows the source signals which are
recorded separately, and their spectrograms are shown
in Figure 6. We mixed these signals as,

x1(t) = s1(t) + 0.3s2(t − 1) (13)
x2(t) = s2(t) + 0.3s1(t − 1). (14)

These inputs are shown in Figure 4, and their spec-
trograms are in Figure 7.

We applied our algorithm and as a result, separated
signals are obtained in Figure 5, and their spectro-
grams are shown in Figure 8.

V. Conclusion

We have proposed an on-line algorithm for convolu-
tive mixture, based on the notion of temporal struc-
ture of speech signals. Thanks to the advantage of
on-line learning, it can follow the changing environ-
ment in time and separate the signals. For example, it
works for a situation in which a person is speaking in
a room and moving around. Since our algorithm are
constructed with rather simple procedures, i.e. Fourier
transform and instantaneous BSS algorithms and it is
easy to implement on a hardware, a possible applica-
tion would be a system for tracking person’s voice in
real time.
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Figure 3: The source signals: each signal was spoken
by a different male and recorded with sampling rate
of 16kHz. s1(t) is a recorded word of “good morning”
and s2(t) is a Japanese word “konbanwa” which means
“good evening”.
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Figure 4: Input signals
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Figure 5: Output signals
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Figure 6: Spectrogram of the source signals
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Figure 7: Spectrogram of the input signals
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Figure 8: Spectrogram of the output signals y11 and y22
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