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Abstract

In this paper we introduce a new technique for blind source separa-

tion of speech signals. We focus on the temporal structure of the signals

in contrast to most other major approaches to this problem. The idea

is to apply the decorrelation method proposed by Molgedey and Schus-

ter in the time-frequency domain. We show some results of experiments

with both artificially controlled data and speech data recorded in the real

environment.

1 Introduction

Recently, blind source separation, or BSS, within the framework of indepen-
dent component analysis has attracted a great deal of attention in engineering
field. It has been widely noticed that there are many possible applications
such as removing additive noise from signals and images, separating crosstalk in
telecommunication, preprocessing for multi-probed radar-sonar signals, and an-
alyzing EEG (Electroencephalograph) or MEG (Magnetoencephalograph) data
(see for example [12]).

Blind source separation is the problem to separate independent sources given
a mixed signal where the mixing process is unknown. We want to extract each
source from the mixed signals using some technique. Even if the mixing process
is unknown, we can separate the sources if they are independent to each other.

The major approaches of blind source separation use higher order statistics
but not the temporal structure of input signals. These algorithms also need
iterative calculations for estimating the source signals because in most cases,
they require non-linear optimization. On the other hand, Molgedey and Schuster
have shown that it is possible to separate signals by using second order statistics
as a form of correlation function. Their approach does need neither higher order
statistics, nor iterative calculations.

In this paper, we propose a blind source separation method for tempo-
rally structured signals, in particular speech signals. Blind source separation
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of speech signals is often called the “cocktail party effect problem”. This name
comes from the fact that we can hold a conversation at a cocktail party even
though we are surrounded by loud voices and boisterous music. Speech signals
have a temporal structure that can be regarded as stationary for short time-
scales, although for longer time-scales, it is non-stationary. We can build an
algorithm which uses this temporal structure.

The difficulty of separating recorded speech signals is due to the delays and
reflections of the real environment. Those mixed signals are not instantaneous
mixtures but convolutive mixtures. We solve the problem of this convolution
by applying a windowed Fourier transform. The time signals are transformed
to time-frequency signals, and we apply Molgedey and Schuster’s decorrelation
algorithm to the signals of each frequency components. Molgedey and Schuster’s
decorrelation algorithm cannot solve the ambiguity of permutation and this can
be a big problem in our approach when we reconstruct the time-frequency signal
into separated time signals. We solve this ambiguity by using the time structure
of the speech signals. In particular, we use the envelope of each frequency signal
to group the sources.

Our algorithm has some advantages for hardware implementation, because
the calculation is considerably straightforward, it includes only a few parameter
to be tuned, and it is easy for parallel processing.

This paper is organized as follows: in section 2, we describe some basic
approaches to blind source separation of instantaneous mixed signals. In section
3, we propose an algorithm for blind source separation of convolutive mixtures
and, in section 4 some results of our algorithm will be shown. Finally, we give
a brief summary and concluding remarks in section 5.

2 Blind Source Separation Problem

In this section, we give a formulation of the basic problem of blind source sep-
aration and describe major approaches.

Source signals are denoted by a vector

s(t) = (s1(t), · · · , sn(t))T , t = 0, 1, 2, . . . (1)

and there is the assumption that each component of s(t) is independent of each
other. But it is difficult to define the independence of the sources accurately,
and we use the following notion of pairwise independence: at any time, the joint
distribution of any two different signals can be factorized by their marginals

p(si(t), sj(t
′)) = p(si(t))p(sj (t

′)), ∀t, t′, i, j(i 6= j). (2)

Without loss of generality, we assume the source signal s(t) to be zero mean.
Observations are represented by

x(t) = (x1(t), · · · , xn(t))T . (3)
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They correspond to the recorded signals. In the basic blind source separation
problem, we assume that observations are linear mixtures of source signals:

x(t) = As(t), (4)

where A is an unknown linear operator. A typical example of linear operators is
an n×n real valued matrix. This formulation represents non-delayed (instanta-
neous) linear mixing, such as MEG measurements. Another example is a matrix
of FIR filters, which is commonly used as a model of real-room recording. In
this paper we wish to focus on the latter case; we describe the problem more
fully in the next section.

The goal of blind source separation is to find a linear operator B such that
the components of the reconstructed signals

y(t) = Bx(t) (5)

are mutually independent, without knowing operator A and the probability
distribution of source signal s(t). Ideally we expect B to be the inverse of
operator A, but since we lack information about the amplitude of the source
signals and their order, there remains indefiniteness of permutation and dilation
factors:

BA = PD, (6)

where P is a permutation matrix, i.e. all the elements of each column and row
are 0 except for one element with value 1, and D is a diagonal matrix.

Popular approaches of blind source separation are based on the following
three strategies:

• factorizing the joint probability density of the reconstructed signals by its
marginals,

• decorrelating the reconstructed signals through time, that is, diagonalizing
the covariance matrices at every time, and

• eliminating the cross-correlation functions of the reconstructed signals as
much as possible.

In the rest of this section, we will survey these strategies individually.

2.1 Factorizing Joint Probability

Under the assumption that the source signals are stationary and non-Gaussian,
the independence of the reconstructed signals can be measured by a statistical
distance between the joint distribution

p(y1, · · · , yn) (7)

and the product of its marginals

n∏

i=1

p(yi). (8)
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The Kullback-Leibler divergence is often used as the statistical distance:

KL(B) =

∫
p(y) log

p(y)∏n

i=1 p(yi)
dy (9)

= −H(Y ; B) +

n∑

i=1

H(Yi; B), (10)

where H(Y ; B) is the entropy of the joint distribution p(y) and H(Yi; B) is
the entropy of marginal distribution p(yi), both of which are calculated from
the distribution of observation p(x) and de-mixing operator B in this case. In
particular, when operator B is a matrix, the entropy of the joint may be simply
written as

H(Y ; B) = H(X) + log |B|, (11)

where |B| is the determinant of matrix B. Note that from the assumption of
stationarity, the distributions p(s), p(x) and p(y) are time independent. As
we assume that the sources are not Gaussian, KL(B) vanishes if and only if
reconstructed signals y(t) are mutually independent. Basically, we can estimate
B by minimizing KL(B), but the important problem which remains with this
approach is how to approximate the entropy term H(Yi; B). Since it is impos-
sible to calculate H(Yi; B) directly, these values are usually estimated in the
following manner: first, a stationarity and a sort of ergodicity are assumed on
the source signals, and the ensemble average (phase average) is replaced by the
time average over observations, then parametric families of nonlinear functions
and statistical expansions are used to estimate the entropies or the derivatives
of the entropies with respect to the operator B. Jutten and Herault [9] first pro-
posed the former approach by adopting polynomials. However their discussion
was not from this point of view. Bell and Sejnowski [3] used sigmoidal functions.
Common [6] studied the latter approach, and proposed an algorithm based on
the Edgeworth expansion. Amari et al. [2] used the Gram-Charlier expansion.
There are a lot of variations depending on how one approximates entropies.

We should note that ergodicity is usually not explicitly mentioned in the
literature. However, in order to estimate probability densities only from obser-
vations, we need some sort of ergodic assumption. Strict ergodicity might be
too strong for the blind source separation problem, but we need an assumption
that allows us to use the time average instead of the ensemble average,

〈f(x(t))〉 ∼ 1

T

T∑

t=1

f(x(t)), (12)

where f(x) is a certain function and 〈·〉 denotes the expectation under proba-
bility distribution of x(t). Therefore, there is a problem when this approach is
applied to non-stationary signals, because of the poor estimation of probability
densities. Theoretically, it is impossible to estimate the probability distribution
of non-stationary stochastic process from one observation, because the prob-
ability distribution changes at each time, but we hope there still is a way to
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estimate the demixing matrix B. Some sketchy studies on the problem have
been done along with on-line learning under the assumption of “weak” non-
stationarity, such as slow drifting and stepwise change from one stationarity
process to another.

Another problem is that this approach is not robust to noise. Consider the
case that the observations are noisy,

x(t) = As(t) + ξ(t). (13)

In this case, the divergence KL(B) won’t be 0 for any B and B = A−1 does
not give the minimum of KL(B) in general. Hence estimation based on the
divergence cannot avoid crosstalk. This problem should be reformulated from
the perspective of factor analysis with the EM algorithm and so on (Amari,
personal communication).

2.2 Decorrelating through Time

If some signals are mutually independent, off-diagonal elements of the covariance
matrix vanish. Although the reverse of this statement is not always true, if the
signals are non-stationary we can utilize the covariance to estimate the demixing
matrix B. Matsuoka et al. [13] proposed an algorithm to estimate the matrix
B by minimizing

Q(B; t) =
1

2

{
tr
(
log
〈
y(t)y(t)T

〉)
− log

(
det
〈
y(t)y(t)T

〉)}
, (14)

where 〈·〉 denotes the expectation at each time, and log operates on the matrix
component-wise. For fixed t, there does not exist a unique B which minimize
Q(B; t) and we define a subset of the domain of B:

Bt =
{

B∗; Q(B∗; t) = min
B

Q(B; t)
}

. (15)

In other words, there is ambiguity when determining B from Q(B; t) at each
time t. However, subsets at different time t’s are basically different because of
non-stationarity, and as a result, a proper B is determined as an intersection of
all subsets, i.e.

B ∈
⋂

t

Bt. (16)

Whether B can be determined as one point or not depends on the non-stationarity
of the signals, and if signals are strongly or weakly stationary, the ambiguity of
B does not disappear.

An advantage of this method is that it only uses the second order statistics.
Generally speaking, estimation of higher order statistics is easily influenced
by outliers, and therefore some of the previous methods, which rely on higher
order statistics, are prone to errors in noisy conditions. On the other hand,
because of the ambiguity mentioned above, good estimation is not guaranteed
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for stationary signals. Also, in practice the ensemble average is replaced by the
running average (leaky average)

〈f(t)〉leaky = (1 − ε)〈f(t − 1)〉leaky + εf(t), (17)

where ε is a small positive number. Since the running average is an operation
based on stationarity, and we need a proper assumption that source signals
have both properties of “stationarity” and “non-stationarity” to validate this
operation.

2.3 Eliminating Cross-correlation

The following method is what we use in our experiments. We are going to
explain the original idea of the method in this subsection.

Let us assume that the sources are weakly stationary signals and observations
are instantaneous mixtures, i.e. A is a constant matrix. The correlation matrix
of observations is written as

〈
x(t)x(t + τ )T

〉
= A

〈
s(t)s(t + τ )T

〉
AT

= A




Rs1
(τ) 0 . . . 0

0 Rs2
(τ) . . . 0

...
. . .

...
0 . . . 0 Rsn

(τ)


AT , (18)

where Rsi
(τ) is the auto-correlation function of the source signal si(t). As a

proper matrix B satisfies Equation (6), the correlation matrix of the recon-
structed signals becomes

〈
y(t)y(t + τ )T

〉
=
〈
(PDs(t)) (PDs(t + τ ))

T
〉

=




λ2
1′Rs

1′
(τ) . . . 0

...
. . .

...
0 . . . λ2

n′Rsn′
(τ)


 (19)

where 1′, 2′, . . . , n′ denotes a permutation of the indices 1, 2, . . ., n determined
by matrix P and λi is the i-th diagonal element of matrix D. Including the
ambiguity of matrices P and D, an optimal B can be characterized as a matrix
which diagonalizes the correlation matrix at any time difference τ .

Molgedey and Schuster [14] simplified this concept as the simultaneous di-
agonalization of the correlation matrix of observations at several time delays,
i.e. find B in a certain class of matrices, such that

B〈x(t)x(t + τi)
T 〉BT = Λi, i = 1, . . . , r, (20)

where Λi’s are diagonal matrices.
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There are some algorithms for calculating the solution to Equation (20).
For examples, Molgedey and Schuster proposed a gradient-based method which
minimizes the error function

L(B) =

r∑

i=1

∑

j 6=k

∣∣B〈x(t)x(t + τi)
T 〉BT

∣∣2
jk

. (21)

We are going to use only the straightforward calculation [17, 18]. The algorithm
consists of two procedures, “sphering” and “rotation” (see Figure 1).

Sphering is an operation for orthogonalizing the source signals in the observ-
ing coordinate. Let us define a covariance matrix of observations

V =
〈
x(t)x(t)T

〉
, (22)

and define its square root inverse

√
V −1 =

√
Λ−1ST (23)

where S and Λ are an orthogonal matrix and a diagonal matrix, which satisfy

V = SΛST , (24)

and
√

Λ−1 denotes a diagonal matrix, each of whose elements are the square
root of Λ−1’s elements. Note that from weak stationarity, the covariance matrix
is time independent. By transforming the observation vector as

x′(t) =
√

V −1x(t), (25)

the covariance matrix of the new vector x′(t) is orthogonalized, i.e.

〈
x′(t)x′(t)T

〉
=

√
V −1V

√
V −1

T
= I, (26)

where I is the identity matrix. Intuitively speaking, an observation is thought
as a projecting the source signals in a certain direction. Although the directions
of the original observations are in general not orthogonal, sphering rearranges
them to be orthogonal to each other.

Even after sphering observed signals, there is still an ambiguity of rotation.
The correct rotation is determined by removing the off-diagonal elements of the
correlation matrix at several time delays. A possible implementation is to find
an orthogonal matrix C which minimizes

r∑

k=1

∑

i6=j

∣∣(CMkCT )ij

∣∣2 , (27)

where (CMkCT )ij denotes the ij-element of matrix CMkCT and

Mk =
〈
x′(t)x′(t + τk)T

〉
, k = 1, . . . , r. (28)
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To solve this approximate simultaneous diagonalization problem, Cardoso and
Souloumiac [5] proposed a Jacobi-like algorithm, and we use their method in
our implementation.

With these two operations, matrix B is given by

B = C
√

V −1. (29)

An advantage of this method is that it uses only the second order statistics.
Moreover it could be applied even when the observations contain white noises.
White noise can be avoided by using only the cross-correlations at τ 6= 0. Basi-
cally this method is applied when the sources are weakly stationary signals with
different auto-correlation. However, even when the signals are non-stationary,
it is applicable if the non-stationarity is not strong and we can well approximate
the averaged correlation functions by using the observations

1

T

T∑

t=0

〈
x′(t)x′(t + τk)T

〉
∼ 1

T

T∑

t=0

x′(t)x′(t + τk)T (30)

for appropriately chosen T and τk.
Molgedey and Schuster also mentioned an algorithm with directly solves the

eigenvalue problem of the two correlation matrices

M−1
1 M2B

T = BT Λ−1
1 Λ2, (31)

but from a practical point of view, this procedure is sensitive to the estimation
error of the correlation matrices, such as observation noise. Hence simultaneous
diagonalization at several time delays is more feasible in practice.

3 Proposed Method on Convolutive Mixtures

We have shown some approaches to the blind source separation problem for
basic instantaneous mixtures. In this section, we focus on convolutive mixtures
of time-structured signals, such as speech signals, and we propose an algorithm
for blind source separation. In this paper, we use the term, time-structured
signal, as a model of a natural signal, which we characterize as follows:

• signals are supposed to be stationary within a short time-scale,

• signals are intrinsically non-stationary in a long range because of ampli-
tude modulation and so on.

In the case of speech signals, it is said that the human voice is stationary for
a period shorter than a few 10msecs[10]. If it is longer than a few 10msecs
and around 100msec, the frequency components of the speech will change its
structure. This means that the speech signal is not stationary.

Our idea is to transform the mixed signals to the time-frequency domain,
which is typically called a spectrogram. After that, we perform blind source
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separation for each frequency. Finally, we reconstruct the separated signals
from the spectrograms of the separated signals.

The first property allows us to apply the windowed Fourier transform at a
short time range. The length of the time window should be determined with
prior knowledge. We used the second property to properly combine the decom-
posed frequency components. Usually, blind source separation does not care
about the permutation of the separated signals, but because we apply blind
source separation to every frequency separately, we have to know how to com-
bine them. From the assumptions it follows that there won’t be a drastic change
of the distributions of frequency components, and the spectrums are assumed to
be continuous. Using this continuity, we can combine the separated frequency
elements and construct the separated spectrograms.

We also assume that observations are time independent convolutive mix-
tures, i.e.

x(t) = A ∗ s(t), (32)

where each element of A(t) is an unknown transfer function.
Relying on the first assumption of signals, we apply the Fourier transform

with moving windows (see Figure 2)

x̂(ω, ts) =
∑

t

e−
√
−1ωtx(t)w(t − ts),

ω = 0, 1
N

2π, . . . , N−1
N

2π, ts = 0, ∆T, 2∆T, . . .

(33)

where ω denotes the frequency and N denotes the number of points in the dis-
crete Fourier transform, ts denotes the window position, w is a window function,
such as Hamming, Hanning or Kaiser, and ∆T is defined as the shifting time of
the moving windows. The length of windows should be shorter than the dura-
tion within which signals are mostly stationary. Also the inversion of Equation
(33) is defined by

x(t) =
1

2π
· 1

W (t)

∑

ts

∑

ω

e
√
−1ω(t−ts)x̂(ω, ts), (34)

where
W (t) =

∑

ts

w(t − ts). (35)

The relationship between observations and sources is approximated as

x̂(ω, ts) = Â(ω)ŝ(ω, ts), (36)

where Â(ω) is the Fourier transform of the operator A(t), and ŝ(ω, ts) is the
windowed Fourier transform of the source s(t).

We now show the details of our algorithm. It is schematically shown in
Figure 3.

If we fix the frequency as ω for spectrograms,

x̂ω(ts) = x̂(ω, ts) (37)
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is a time series of ts, and hence any blind source separation algorithm for non-
delayed mixtures can be applied for estimating Â(ω). In our case, Molgedey-
Schuster’s method is adopted. We have to note that x̂ω(ts) is complex valued,
and therefore the method in Section 2.3 should be extended to complex values.
This can be easily done by substituting a Hermite matrix and a unitary matrix
for a symmetric matrix and an orthogonal matrix respectively.

After the algorithm is applied, we have an estimated time sequence whose
components are mutually independent for each frequency ω

ûω(ts) = B(ω)x̂ω (ts). (38)

Since a general blind source separation algorithm cannot solve the ambiguity of
permutation and dilation, in each frequency channel, the signals are permutated
and amplified independently. This means that, even if we put ûω(ts) along with
ω, those spectrograms is mixed up with the different independent sources and
the amplitude are irregular.

To solve the permutation and dilation problem, we disassemble the spectro-
grams exploiting the independent components at each frequency channel. Let
us define split spectrograms by

v̂ω(ts; i) = B(ω)−1




0
...

ûi,ω(ts)
...
0




, (39)

where index i denotes the dependence of the spectrograms at ω on the i-th
independent component of ûω(ts). Note that implicitly, i is a function of the
frequency ω, i.e. i = i(ω). In order to obtain v̂ω(ts; i), we apply B(ω) and
B(ω)−1 , and therefore v̂ω(ts; i) does not have an ambiguity of dilation.

The remaining problem is permutation. When the signal is stationary, any
Fourier components at different frequencies are uncorrelated, so that it is impos-
sible to find an appropriate sorting. However, we can utilize the non-stationarity
of the source signals. Based on the second assumption of the source signals, if
the split band-passed signals v̂ω(ts; i) originate from the same source signal, it
is natural to assume that they are under the influence of a similar modulation
in amplitude. To put it concretely, we define an operator E as

E v̂ω(ts; i) =
1

2M

ts+M∑

t′s=ts−M

n∑

j=1

|vj,ω(t′s; i)|, (40)

where M is a positive constant and vj,ω(ts; i) denotes the j-th element of
v̂ω(ts; i). Also we define its inner product and norm as

E v̂ω(i) · E v̂ω′(j) =
∑

ts

E v̂ω(ts; i)E v̂ω′(ts; j), (41)

‖Evω(i)‖ =
√
E v̂ω(i) · E v̂ω(i). (42)
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We solve the permutation by sorting them. Sorting was determined with the
correlation between the envelopes of band-passed signals (see Figure 4):

• Sort ω in order of the weakness of correlation between independent com-
ponents in ω. This is done by sorting in increasing order of

sim(ω) =
∑

i6=j

E v̂ω(i) · E v̂ω(j)

‖E v̂ω(i)‖‖E v̂ω(j)‖ , (43)

sim(ω1) ≤ sim(ω2) ≤ · · · ≤ sim(ωN ). (44)

• For ω1, assign v̂ω1
(ts; i) to ŷω1

(ts; i) as it is:

ŷω1
(ts; i) = v̂ω1

(ts; i), i = 1, . . . , n (45)

• For ωk, find the permutation σ(i) which maximizes the correlation between
the envelope of ωk and the aggregated envelope from ω1 through ωk−1.
This is achieved by maximizing

n∑

i=1

E v̂ωk
(σ(i)) ·




k−1∑

j=1

E ŷωj
(i)


 (46)

within all the possible permutations σ of i = 1, . . . , n.

• Assign the appropriate permutation to ŷωk
(ts; i):

ŷωk
(ts; i) = v̂ωk

(ts; σ(i)). (47)

As a result, we can solve the permutation ambiguity and obtain separated
spectrograms

ŷ(ω, ts; i) = ŷω(ts; i). (48)

Applying the inverse Fourier transform defined by Equation (34), we finally get
a set of separated sources

y(t; i) =
1

2π
· 1

W (t)

∑

ts

∑

ω

e
√
−1ω(t−ts)ŷ(ω, ts; i), i = 1, . . . , n (49)

where i denotes the index of independent components. Note that we have
separated the sources y(t; i) which has the same dimension as x(t) where i
is the number of sources. For example, if inputs are 2, the separated sources
are 4 in our method. And also note that from its definition,

∑
i y(t; i) = x(t).
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4 Experimental Results

In this section, we show some results of the proposed algorithm. First, the
sources are mixed on the computer and our algorithm was applied to those
mixed data. Since the true sources were available, we can evaluate the perfor-
mance of the algorithm. Also another result with the data recorded in the real
environment will be shown. In this case, we cannot know the true sources. We
show the result with graphs. The data is available on our web page:

http://www.islab.brain.riken.go.jp/~shiro/blindsep.html

4.1 Artificial Data

4.1.1 Separating instantaneous mixtures with the basic de-correlation

approach

In this subsection, we show the result of an experiment on a set of data which
was mixed instantaneous on a computer. Figure 5 shows the sources which were
recorded separately on the computer.

We mixed these source signals without delay as in Equation (4) where the
matrix A is shown below. The mixed signals are shown in Figure 6.

x(t) = As(t) =

(
a11 a12

a21 a22

)
s(t) =

(
1 0.7

0.3 1

)
s(t)

Since x(t) is not a convolutive mixture, we can apply the original technique
in Subsection 2.3. The results are shown in Figure 7. We used 30 matrices for
simultaneous diagonalization in the experiment. Since we know the true sources
and the mixing rates, we can evaluate the performance using the SNR (Signal
to Noise Ratio) which is defined as

signali(t; j) = aijsj(t)

errori(t; j) = yi(t; j) − signali(t; j)

SNRij = 10 log10

∑
t signali(t; j)

2

∑
t errori(t; j)2

.

SNRij for this experiment is shown in Table 1. Every SNRij is more than 27.0
which means crosstalk is less than 1/500.

4.1.2 Separating instantaneous mixtures with the proposed method

In this subsection, our algorithm described in section 3 was applied to the same
problem in the last subsection.

In order to use our algorithm, we have to first define some parameters. Our
algorithm needs to apply the windowed Fourier transform which was defined in
Equation (33). There are two parameters for a windowed Fourier transform,
one is the window length and the other is the shifting time ∆T . We also have
another parameter r in Equation (28) which is the number of matrices to be
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diagonalized simultaneously. We made some preliminary experiments to set
these parameters.

From some trials, we found that ∆T and r are strongly related, but that win-
dow length is relatively independent of these values. The SNRij ’s are measured
by changing the window length from 4msec to 32msec and ∆T from 0.0625msec
to 2.5msec. We used the Hamming window for the window function. Results of
SNR11 is shown in Figure 8. It is clear from the graph that the window length
with 8msec gave results better than the others and we confirmed this fact for
other ij and r with experiments not shown here. Therefore, we defined window
length as 8msec for this experiment. Signals were all recorded with a sampling
rate of 16kHz and 8msec corresponds to 128 points of samples.

This set the window length, but we still had to define ∆T and r. Theo-
retically, r can be 2 or any larger number. However, small r gives an unstable
solution, and large r leads to a wrong solution because time difference between
correlation matrices will be too larger for the stationarity of speech signals. We
changed ∆T and r and calculated SNRij . Figure 9 shows the result of SNR11

with changing ∆T from 0.0625msec to 2.5msec and r from 2 to 70. From this
graph, we see that there is a peak on each row. To see this more clearly, we
replot SNR11 versus ∆T × r. ∆T × r is the interval of time within which the
matrices are diagonalized. This value should not go beyond the stationarity of
the speech signals. The result is shown in Figure 10. We can see there is a peak
between 30 and 50msec. It is said that speech signals are stationary around
40msec, and this matches the result we obtained here. This feature is also true
for other ij’s. We can see that the combination of ∆T = 1.25msec and r = 40
is the best. The position of the peaks are almost the same for other ij’s, and we
decided to use these values for ∆T and r. SNR11 for this combination is 18.9
(crosstalk is 1/77.6).

The parameter M in Equation (40) is used to make the moving average of
signals to make the envelopes. We used ∆T × (2M + 1) to be around 40msec.
We defined M as 15, because ∆T was defined as 1.25msec.

Finally, we show the separated signals in Figure 11, and SNR’s in Table 2.
Crosstalk is small and it is hard to see them in the graph.

4.1.3 Separating convolutive mixtures

Our main aim of this paper is not to separate instantaneous mixtures, but to
separate convolutive mixtures. We also made convolutive mixture signals on
the computer and used these signals for experiment to assess how our algorithm
works. As in Equation (32), a convolutive mixture is defined as,

x(t) = A ∗ s(t) =

( ∑
j a1j ∗ sj(t)∑
j a2j ∗ sj(t)

)

aij ∗ sj(t) =

∞∑

τ=0

aij(τ)sj(t − τ ).

aij ∗ sj(t) is the convolution of aij(t) and sj(t).
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We wanted to simulate the general problem of recording sounds in a real
environment. When sound signals are recorded, the major factors causing con-
volutions are reflections and delays. In order to simulate these factors, we built
a virtual room as Figure 12 and calculated reflections and delays.

We supposed that each wall, floor and ceiling reflects the sound. The
strength of the reflection is 0.1 in power for any frequency. We also supposed the
strength of the sounds varies in proportion to the inverse square of the distance.
Because the second reflection of a sound is really small, we only counted the first
reflection. In Figure 13, the impulse response from source 1 to microphone 2 is
shown. Also we show the window function with different lengths in the graph.

Apparently, the impulse response is rather long and if the window length
is 8msec, all the reflections within one window cannot be included. If all the
reflections are not included within a window, our new approach won’t work well.
Hence we have to set the window length longer than the impulse response. But
as shown in Subsection 4.1.2, if we make the window length long, the SNR will
be worse. There is a trade-off between the window length and SNR for the
convolutive mixture.

The source signals are the same as Figure 5. The convolutive mixtures in
this virtual room are shown in Figure 14.

For the separation, we first applied the original de-correlation algorithm. Of
course it didn’t work for a convolutive mixture. We also applied our algorithm,
changing the window length from 8msec to 32msec. The SNRs of these results
are shown in Table 3. Our approach with the window length of 32msec gave
the best SNRs. Separated signals are shown in Figure 15(window length was
32msec, ∆T was 1.25msec, r was 40.).

4.2 Real-room Recorded Data

In this subsection, we will show a result of our algorithm applied to data recorded
in a real environment. This data was recorded by Prof. Kota Takahashi in the
the University of Electro-Communications. Two males were repeating different
phrases simultaneously in a room and they were recorded with two microphones
with 44.1kHz for 5sec. Data was processed with low pass filter with 500 taps,
and the sampling rate was reduced to 16kHz. Inputs to the microphones were
shown in Figure 16.

We applied our algorithm to this data. The parameters are set as in the last
subsection. Window length was 32msec (512 points), ∆T was 1.25msec and r
was 40. The result is shown in Figure 17.

In this experiment, we don’t know the source signals precisely, and we cannot
calculate the SNRs. The only way to evaluate the performance is to see the
graphs and to listen to the results. A part of the separated signals y1(t, 1) and
y2(t, 2) are shown in Figure 18. These two signals seem to be independent in
the graphs. We listened to them and they were separated clearly.
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5 Conclusion

We proposed a blind source separation algorithm based on the temporal struc-
ture of speech signals. Our algorithm has a feature that it only uses straight-
forward calculations, and it includes only a few parameter to be tuned. This is
possible because of the short range and long range temporal structure of nat-
ural acoustic signals. On the experiments, the algorithm worked very well for
the data mixed on the computer and also for the real-room-recorded data. We
haven’t shown other results but we have also applied our algorithm to other
data, and they are available under our home page. The results are also pretty
good.

Blind source separation of convolutive mixtures is a problem of estimating
a filter matrix from sources to each sensors. In our algorithm, we use the
parameterization of a filter matrix in the frequency domain (cf. [8, 15]) as

A(ω) =

K∑

k=0

Akδ(ω − ωk) δ(ω − ωk) =

{
0 ω 6= ωk

1 ω = ω
. (50)

Ak is a matrix estimated for each frequency independently. This is the reason
we can build our algorithm with only straightforward calculations. In order to
separate the signals, we need the inverse filter, and we can estimate the inverse
process easily by calculating A−1

k . A problem with this parameterization occurs
when one of the source signals does not have any frequency component on a
frequency ωk. In our algorithm, we cannot estimate A−1

k since Ak is a singular
matrix. We have to treat these cases separately.

Another major approach for convolutive mixtures is to parameterize the
impulse response from each source to each sensor with an FIR filter. This
approach estimates the parameters of the filters and build inverse filters to
separate the signals (e.g. [7]). The impulse responses from sources to sensors
are defined in matrix form,

AFIR(t) =
L∑

l=0

AFIRlδ(t − tl), (51)

where AFIRl is a matrix which corresponds to the tl-time delayed component of
the mixing process. The Fourier transform of the filter is defined as

ÂFIR(ω) =
L∑

l=0

AFIRle
√
−1ωtl. (52)

One of the advantages to this parameterization is that some sort of continuity
across different frequencies can be included naturally because the Fourier trans-
form ÂFIR(ω) for any ω depends on all the mixing matrices ÂFIRl’s. A disadvan-

tage of the approach is that, in order to estimate the parameters ÂFIRl, usually
some kind of iterative procedures is necessary, and after estimating ÂFIRl, it
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needs inverse filters to separate the signals. The inverse filters are defined as

Â−1
FIR(ω) =

(
L∑

l=0

AFIRle
√
−1ωtl

)−1

(53)

This inverse filter generally doesn’t have finite impulse response and we also
have to be careful with their causality. And, we cannot calculate this for each
frequency independently.

There are still some problems to be solved in our algorithm. We have three
major parameters, the window length, ∆T and r. We showed that window
length can be defined independent of the other two parameters, but window
length has a strong relation to the impulse response of its mixing process. If
the mixing process has a long impulse response, window length has to be cor-
respondingly longer, but it will make the performance worse because it will go
beyond the stationary range of the source signals. There is another problem,
that is, the sampling rate. In our experiments, we only used a sampling rate
of 16kHz. From the sampling theorem, it follows that the data includes sig-
nals whose frequency component is below 8kHz. Usually, speech signals have
some power for every component under 8kHz. Our algorithm applies the decor-
relation algorithm for every frequency component, but if even one component
doesn’t have any power, the decorrelation algorithm fails. Therefore, if we use
44.1kHz for the sampling rate of speech signals, there will be a lot of compo-
nents which cannot be separated correctly. We need some other technique to
solve this problem.

Finally, we want to say that this is only the first trial of this approach. The
results were pretty good, and the algorithm is easy for hardware implementa-
tion; we are now working for it. We are also working on realizing its on-line
version. An on-line algorithm will make it possible to follow the changing en-
vironment, such as tracking walking speakers. Our algorithm is based on the
windowed Fourier transformation, but we can use filter banks or Wavelets in-
stead of Fourier transformations. We are investigating the possibility of these
modifications. After separating each frequency component, we rebuild them to
construct new spectrograms. We use the envelope of the signals to classify each
component, but here, it may be possible to use the continuity of de-mixing ma-
trices between close frequency channels. This is also one of the problems which
have not been solved.
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Figure 5: The source signals: each signal was spoken by a different male and
recorded with sampling rate of 16kHz. s1(t) is a recorded word of “good morn-
ing” and s2(t) is a Japanese word “konbanwa” which means “good evening”.
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Figure 6: The mixed signals: the source signals were linearly mixed on a com-
puter.
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Figure 7: The separated signals using the basic decorrelation algorithm: 30
matrices were used for simultaneous diagonalization.
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Figure 11: The separated signals using the proposed algorithm: the window
length was 8msec, ∆T = 1.25msec and r = 40.
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Figure 13: The impulse response from the source 1 to the microphone 2 in a
virtual room
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Figure 14: The mixed signals in a virtual room
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Figure 15: The separated signals: the proposed algorithm was applied with the
window length of 32msec, ∆T = 1.25msec and r = 40.
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Figure 16: The recorded signals in a real room: two males were speaking differ-
ent phrases independently. Speaker 1 repeated Japanese name of their univer-
sity, and speaker 2 repeated the title of their research in Japanese.
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Figure 17: The separated signals: the proposed algorithm was applied with the
window length of 32msec, ∆T = 1.25msec and r = 40.
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Figure 18: A part of y1(t, 1) and y2(t, 2) in Figure 17: they were zoomed up
from t =2.5sec to 3.5.
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Table 1: The SNRs (dB) for linear mixture using the basic decorrelation algo-
rithm: 30 matrices were used for simultaneous diagonalization.

SNR11 SNR12 SNR21 SNR22

40.98 27.45 41.54 41.56

Table 2: The SNRs (dB) for linear mixture using the proposed algorithm: the
window length was 8msec, ∆T = 1.25msec and r = 40.

SNR11 SNR12 SNR21 SNR22

18.90 11.13 19.71 21.14

Table 3: The SNRs (dB) for convolutive mixtures in a virtual room: ∆T =
1.25msec and r = 40.

SNR11 SNR12 SNR21 SNR22

Original de-correlation -1.87 -1.22 2.93 2.74

Our approach 8msec 4.36 6.32 11.94 11.66
(window length) 16msec 4.72 6.65 12.66 12.52

32msec 6.47 7.30 14.40 13.19
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