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Abstract

The author gives an algorithm to search the struc-
ture of a stochastic models with hidden variable. The
author have shown the algorithm to find the hidden
structure of the Hidden Markov Model and in this
article, the algorithm is applied for one of the other
stochastic models which have hidden probabilistic vari-
ables.

I. Introduction

The Neural Networks have great ability to express var-
ious types of functions. The Neural Network has this
ability because it has a lot of parameters and also be-
cause it can have many kinds of structures which is
determined by the number of the cells and the connec-
tions between them. Conversely speaking, if we want
to use the Neural Network as a powerful tool, it is
important to set these parameters and also determine
the structure correctly.

To set the values of the parameters, we have some
algorithms. Though, we do not have any successful
algorithm to choose the structures of the Networks ex-
cept trial and error.

The problem to determine the structures of the
model is equivalent to so-called “model selection” in
statistics. In model selection, we usually prepare some
candidates, and use a measure to define how “good”
each model is by some information criteria. AIC
(Akaike’s information criterion) is one of such mea-
sures. AIC can be used for the models whose parame-
ters are estimated by the maximum likelihood method.

It seems easy to carry out the model selection for se-
lecting the structure of the Neural Networks by model
selection. Though there is a practical problem. To
have a good model, we have to prepare a lot of candi-
dates with different structures. If we try to estimate
parameters of many possible candidates, it takes enor-
mous time. Therefore, we have to prepare models of
different structures in an effective manner. The author
proposes an algorithm in which the model of simple
structure is modified successively to more complicated

ones by adding some new parameters to the model.
Thus, the machine “searches” the optimal structure of
the model.

In this article, the author gives the outline of the al-
gorithm and simple experiment which is applied for
probabilistic Neural Networks, stochastic multilayer
Perceptron which was proposed by Amari[1][2]. In the
stochastic multilayer Perceptron, each cell behaves in
stochastic manner and the cells in hidden layer are the
hidden probabilistic variables. For these probabilistic
model, we can use EM (Expectation Maximization)
algorithm[3] to estimate the parameters. And in this
article, the EM algorithm acts the important role for
searching the model structure. The outline of the al-
gorithm is as follows.

1. Give the simple structure.

2. Estimate parameters using EM algorithm.

3. Give more connections which would increase its
likelihood function best.

4. Measure the model with AIC. If further opera-
tions would be useless, exit, otherwise go to 2.

In the algorithm, the number of the cells is fixed,
and those cells are not fully connected each other. By
increasing the number of the connections between the
cells, this algorithm can generate an Neural Network
which works better.

In the algorithm, the key point is how to select the
parameter to add the network. If it is chosen at ran-
dom, this algorithm is just a random search. The
parameter should be the one which makes the model
better. By using EM algorithm, we can select the pa-
rameter which is closest to the gradient decent. This
means that by EM algorithm, we can select the pa-
rameter which will be most effective to add. The au-
thor shows this result through information geometrical
analysis [2].



II. Stochastic Multilayer Perceptron

Stochastic Multilayer Perceptron (Fig. 1) was intro-
duced by Amari[1][2]. In this article, we consider only
the network with one hidden-layer Perceptron with a
single output unit. Let x= (xi), i = 1, · · · , n is input
vector and z= (zj), j = 1, · · · , m be the outputs of m
hidden units. Each xi zi takes binary values 0 and 1.
When x is the input, the probability of zi = 0, 1 is,
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Figure 1. Stochastic Multilayer Perceptron

p(zi|x) =
exp(ziwi · x)

1 + exp(wi · x)
. (1)

The output y is also take 0 and 1 with,

p(y|z, x) =
exp(yv · z)

1 + exp(v · z)
. (2)

From (1) and (2),we can have,

p(y, z|x) = p(y, z|x)
∏

i

p(zi|x)

=
exp(yv · z)

1 + exp(v · z)

∏
i

exp(ziwi · x)
1 + exp(wi · x)

,

(3)

and
p(y|x) =

∑
z

p(y, z|x). (4)

You can see from (3), that p(y, z|x) is an exponential
family which is easily understood from,

l(y, z|x) = log p(y, z|x)
= yv · z − log(1 + exp(v · z))

+
∑

i

(ziwi · x − (1 + exp(wi · x))) .

(5)

If we only can have some data for training which is
a set of (yi, xi), we cannot see the probability of z.

This means z are hidden probabilistic variables. In
this article, the author suppose that the true distribu-
tion is known. And we have to estimate the parameter
and the structure of the stochastic multilayer Percep-
tron. For parameter estimation, EM algorithm is a
good algorithm. In the next section, the author gives
the outline of the EM algorithm and the model search
algorithm.

III. EM algorithm and Model search
algorithm

A. EM algorithm

Now, the probability of the teacher, q(y, x) is avail-
able. And we have to evaluate the parameter of the
model. Or in general cases, q(y, x) is not available but
we have some samples for estimating the parameter.
Then we can have the empirical distribution q̂(y, x).
In both cases, it is difficult to estimate the parame-
ters by Maximum Likelihood Estimate method, direct
expression of MLE is to solve

θ̂ = argmax
θ

∑
i

log p(yi|θ). (6)

It is difficult to have the answer because the model has
some hidden probabilistic variables z.

The EM algorithm [3] can be used for this situation.
The EM algorithm consists of two steps, E-step (ex-
pectation) and M-step (maximization). By iterating
these two steps, θ is modified successively and we can
obtain the MLE as the converged point[3]. The geo-
metrical understanding of EM algorithm was given by
Amari[2](Fig. 2).
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Figure 2. Geometrical view of the EM algorithm

• E-step Calculate Eθt [l(y, z|x, θ)]q(x,y)

Q(θ, θt)



=
∫

l(y, z|x, θ)p(z|y, x, θt)q(x, y)dµydµzdµx

(7)

• M-step Calculate the θ which maximize Q(θ, θt),
and let the parameters θt+1.

∂Q(θ, θt)
∂θ

∣∣∣
θt+1

= 0 (8)

Because p(y, z|x, θ) is an exponential family. If θt+1

is close to θt,

∂Q(θ, θt)
∂θ

∣∣∣
θt

+
∂2Q(θ, θt)

∂θ2

∣∣∣
θt

(θt+1 − θt) � 0. (9)

It can be easily shown that,

∂

∂θ

∫
q(x, y)l(y|x, θt)dµydµzdµx =

∂Q(θ, θt)
∂θ

∣∣∣
θt

.

∂

∂θ
KL(q(y, x), q(x)p(y|x, θ)) =

∂Q(θ, θt)
∂θ

∣∣∣
θt

. (10)

KL(, ) is Kullback-Leibler divergence. Also it can be
easily shown that,

∂2Q(θ, θt)
∂θ2

∣∣∣
θt

= −G(θ). (11)

Here, G(θt) is the Fisher information matrix where,

G(θ) = −
∫

q(x)p(z, y|x, θ)
∂2l(z, y|x, θ)

∂θ2
dµxdµydµz.

Using these facts, the first term of (9) is equal to
(10), and the second term of (9) is equal to (11). (9)
can be rewritten as (13)(This result is also shown in
[4]).

∂L(yN
1 |θt)

∂θ
− G(θt)(θt+1 − θt) � 0 (12)

(θt+1 − θt) � G−1(θt)
∂L(yN

1 |θt)
∂θ

. (13)

B. Model Search Algorithm

In this article, the author gives an algorithm to find
the best model by modifying the structure of the model
little by little. In the algorithm, the author proposes
a way to modify the model by adding new parameters
to the model.

If new parameters are added at random, then the
algorithm is just a random search algorithm. In this
article, the author shows the way to evaluate how good
the parameter will make the model without estimat-
ing them. With the evaluation, we can decide which
parameter should be added to the model.

Figure 3 describes the algorithm schematically. The
S is the space of probabilistic models that each point of
S is a probabilistic distribution. The M is a submani-
fold of the model q(x)p(y, z|x, θ) which is embedded in
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Figure 3. Geometrical view of the algorithm

S, where θ is the coordinate. Observed data can only
give us the empirical distribution of the visible data.
Therefore the probability distribution of the hidden
variable z can be assigned arbitrarily, and this ambi-
guity consists submanifold D can be defined in S.

Now, the model p(y, z|x, θ) has n parameters and
θ∗ is the Maximum Likelihood Estimator. Suppose
the case we can add only one of θn+1 · · · θn+k in the
next step. In this figure only two dimensions for θn+1

and θn+2 are shown, but actually, the model consists
a manifold of n + k dimensions [5].

With θ∗, ∂iKL(q, p) =
∂KL(q(y, x), q(x)p(y, x))/∂θi = 0, i = 1, · · · , n.
The candidate parameters are θn+1 · · · θn+k. We
want to select the parameter which makes the model
better among them. Here “better” means making
KL(q(y, x), q(x)p(y|x, θ)) smaller. This is equal
to make the likelihood function larger. For new
parameters θn+1 · · · θn+k, usually ∂iKL(q, p) are
not 0. Therefore it seems that we should select the
parameter which makes ∂iKL(q, p) largest. But if
we compare only the values of ∂iKL(q, p), it is not
enough. We should discuss them regarding the Fisher
metric of the n + k dimensional manifold.

Let Θ = (θ1, · · · , θn, θn+1, · · · , θn+k), and Θ(i) =
(θ1, · · · , θn, θn+i). By projecting ∂L(yN

1 |θ)/∂θi to the
tangent space of the Model p(y|Θ), we can find the
direction of the steepest gradient. In Figure 3, it
is shown as ea. If we add only θn+1 to the model,
the steepest gradient is e1 on the tangent space of
p(y|Θ(1)), because the projection and the tangent
space are different. Also, if θn+2 is added, e2. If we



have to select one of θn+1 and θn+k then it is natural
to select the one that is closer to ea

To determine which to select, if we can calculate the
inner product of ea and, ei, then, we can compare the
cosine between ea and ei and decide which is better.

It can be easily shown that, we can have the criterion
for selecting the new parameter which is corresponding
to the cosine between ea and ei. That is,

Ci =
(La)tG−1(Θ)Li√

(La)tG−1(Θ)La
√

(Li)tG−1(Θ)Li
.(14)

Here, La = (∂1KL, · · · , ∂nKL, ∂n+1KL, · · · , ∂n+kKL)t

and Li = (∂1KL, · · · , ∂nKL, 0, · · · , 0, ∂n+iKL, 0, · · · , 0)t.
In the criterion,

√
(La)tG−1(Θ)La is negligible be-

cause it is common to all the models. And you can
see, from equation (13), G−1(Θ)La is approximately
equal to one step of EM algorithm. Therefore the
criterion (14) can be rewritten as

Ci =
(EM(Θ) − Θ∗)tLi√
(EM(Θ(i)) − Θ∗

(i))
tLi

, (15)

where, EM(θ) is the parameter which we can have af-
ter only one EM step. If you want to estimate the pa-
rameter, you have to iterate EM step for many times,
but Ci can be calculated without iteration.

IV. Experiments

I made a simple experiment. Figure 4 is the target
model which gives the q(y|x) and Figure 5 is the prob-
abilistic model. the dimensions of input vector x and
z are 4 for both. the probability of q(x) is uniform.
So, this time, q(x) = 1/16 for each. First, we estimate
the parameter of Figure 5 with EM algorithm. After
the parameters are estimated, I select the parameter
to add the model. If the parameter is the same place
as the target model, then the algorithm is thought to
be effective.
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Figure 4. Target
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Figure 5. Model

100 target models were made at random. And each
time the parameter to be added is selected according
to the algorithm. Candidate parameters are 12 at each
time. If you select the parameter at random, then the
correct rate would be 1/12. But the result shows the
rate is double. The results are shown in Table 1. The
result shows that the algorithm is effective for finding
the better parameter.

Random 1/12(=0.083)
Algorithm 17/100(=0.17)

Table 1. Result

V. Conclusion

By the algorithm, it seems that we can select the bet-
ter parameters. Still it is not 100% correct. This al-
gorithm tries to find the best parameter according to
the first order approximation. This means that in the
algorithm, the model is approximated by the tangent
space and the one candidate is selected. But the man-
ifold is usually not flat. The approximation does not
work well when the converged point of the MLE is far
from the current point.

Even selected one parameter is OK, there still re-
mained some problem. If we continue this way of
selecting the parameter, what the consequent models
would be? The author is working for theoretical un-
derstanding of the algorithm and the study will help
to understand this.

There are still some problems for this algorithm. In
this case, this algorithm cannot be used for adding
the new cell. Adding the new cell is corresponding
to adding a new hidden variable and this is a difficult
problem. The author solved this problem according to
each model, but has not found global solution for this
problem.
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