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Abstract: The author proposes an algorithm to
define a structure of a HMM (hidden Markov
model) [1]. HMMs are widely used in the speech
recognition systems and at that time structures
are usually determined according to the heuristic
knowledge. In this article this problem is treated
as so-called “model selection” problem in statis-
tics. Two recognition experiments using this algo-
rithm are shown. First, artificial data then, ATR
speech database are used for the source. Through
these experiments, the author shows that such
model selection is effective.

1 Introduction

In the field of speech recognition, HMMs are widely used
to represent the phones and words[2]. When we use the
HMMs, we have to choose their structures at first. The
structure of a HMM is represented by the number of the
states and the definition of the transitions between them.
In most of the conventional works using HMMs, the struc-
tures are chosen according to the heuristic knowledge.

The essence of this problem is how to choose the struc-
ture of a probability model. This problem is called “model
selection” in statistics and some information criteria are
proposed for this. One of the most popular criteria is AIC
(Akaike’s information criterion). We can execute model
selection by selecting the model which minimizes the cri-
terion. AIC can be used for the models whose parame-
ters are estimated through maximum likelihood estima-
tion, and can be used for HMMs whose parameters are
estimated by Baum-Welch (B-W) algorithm[2].

When we execute model selection, we usually prepare
a lot of models with different structures, and select the
best one. But as we can see, HMM is a complicated prob-
ability model and there are enormous numbers of possible
structures. Moreover, B-W algorithm is an iterating pro-
cedure and takes time. Instead of preparing models, the
author proposes an algorithm to search the best structure
by changing its structure successively. At this time, AIC
is used to evaluate the models. AIC is applicable to com-

pare the models which form a hierarchy, where the simple
models are a sub-model of the complicated model.

In this algorithm, 1) A model of a simple structure
is modified successively to a more complicated model by
adding the states and the transitions between them. 2)
At each point the parameters are estimated by B-W al-
gorithm and evaluate the model by AIC. 3) If AIC was
reduced, this algorithm continues to modify the model,
otherwise quit. By these processes, we try to find the
model which minimizes AIC.

In Section 4 , the author shows the results of two ex-
periments. In the first one, hidden Markov probabilistic
sources are used for the sources. And the task is to rec-
ognize the source to which each data belongs. The other
experiment is 5 phones recognition with the ATR speech
database .

Takami and Sagayama[3] proposed an Successive State
Splitting Algorithm (SSS) to generate HM-Net (hidden
Markov network). SSS is the algorithm to construct a
network for whole phones at once. Though in this article,
the purpose is to construct an HMM for each category
separately. Further discussion will be given in Section 5 .

2 AIC

The information criterion AIC[4][5] is defined as the
predictive error (Kullback-Leibler discrepancy) between
the true distribution and the distribution of the model.
Kullback-Leibler discrepancy is defined by

D(p, f) =
∫

p(y) log
p(y)

f(y|θ)dy

=
∫

p(y) log p(y)dy −
∫

p(y) log f(y|θ)dy

(1)

where y is the data (in this article y is discrete), p(y) is
the true distribution, and f(y|θ) is the distribution of the
model. This can be treated like the “distance” between
two distributions, thus we want to select the model which
minimize this value. Because the first term of the eq. (1)
is independent to the model, we have to discuss only the



second term. Apparently the parameters which minimize
the term are the maximum likelihood estimators θ∗. As
the data set Y = {y} is a sample from a distribution
with distribution function p(y), θ∗ and D(p, f) distribute
around their true values θo and Do(p, f). Therefore, in-
stead of using D(p, f) for the criterion, we should use the
estimate value of D(p, f). The estimate value of D(p, f)
over the distribution of the training data is

EY
p [D(p, f)]. (2)

Of course, it is impossible to know the true distribution
p. By estimating this distribution from training data, and
by doubling it, we have the definition of AIC by

AIC = (−2)
n∑

i=1

ln f(yi|θ∗) + 2m (3)

where m indicates the number of the parameters.
AIC consists of two terms. One is the log likelihood of

the data which shows the fitness of the model to the train-
ing data. The other term is the number of the parameters
which shows the complexity of the model. We can denote
the given data more precisely with more parameters. But,
on the other hand this implies that the model would not
be good for other data. Thus AIC is the criterion which
define the “goodness” of the data by the balance of these
two terms.

When we use AIC for HMMs, we have to note that m
in AIC indicates the number of the mutually independent
parameters. It means that every parameter has to satisfy
the eq. (4).

∂f(y|θ)
∂θi

∣∣∣∣
θ∗

= 0 for ∀ i (4)

Not all of the parameters of a HMM, which are estimated
through B-W algorithm, are independent. But we can
easily avoid this problem. For example, by replacing an
aij which is not zero, with

aij = 1 −
∑

j′:j′ �=j

aij′

we can define AIC of HMM. For HMM whose output prob-
ability distributions are discrete, we can define AIC by

AIC = (−2)
n∑

i=1

log f(yi|θ∗) + 2(m − 2s) (5)

where s indicates the number of the states.

3 The Proposed Algorithm

The algorithm is shown schematically in Figure 1. The
structure of a HMM is represented by the number of the
states and the definition of the transitions between them.
In the algorithm, a model of simple structure is modified
by adding the state and the transitions. First, the pro-
cedure of adding the states is shown, then that of adding
the transitions is shown.

Initial Model

Add a New State

AIC

Add a New Transition

AIC

If it is better

If it is worce

If it is worce
If it is better

If no transition was added

Final Model

Figure 1: Flow of the algorithm

3.1 Adding New States

In this procedure, we increase the states one by one. To
define a new state, first, we have to determine its posi-
tion, then give initial values for the parameters of it and
estimate the parameters by B-W algorithm. By iterating
this, the number of the states are increased, and we quit
increasing them according to AIC.
The position of the new state

If one of the states does not represent the data well,
by dividing the state and giving more parameters, we can
give more capability to the model. To see how “bad” the
state is, the entropy of the output probability distribution
of a state and the expect time to remain on the state are
used. The formulations of them are as following

Expected time to remain on the state i

∝
T−1∑
t=1

N∑
j=1

αi(t)aijbj(yt+1)βj(t + 1) (6)

Entropy of the state i

=
K∑
k

bi(k) log bi(k) (7)

The product of these two values is used to define the “bad-
ness” of the state, and the worst state is to be divided.

The value of “badness”

=
T−1∑
t=1

N∑
j=1

αi(t)aijbj(yt+1)βj(t + 1)

×
∑

k

bi(k) log bi(k). (8)

Initial values
After dividing a state, we have to give initial values

for the parameters. Then estimate the parameters by B-
W algorithm. In the left model of Figure 2, the probability
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Figure 2: Define a new state

of staying n times at the State S1 is

Pn = pn
1p2. (9)

In the right model of Figure 2, the probability is

P ′
n = p′n1p′n2 + p′n3 qn

2

n−1∑
i=0

p′i1q
n−i−1
1

=




p′n1 p′2 + q2p
′
3

p′n1 − qn
1

p′1 − q1
p′1 �= q1

p′n1 p′2 + nq2p
′
3p

′n−1
1 p′1 = q1.

(10)

If p′2 = p2, q1 = p1, q2 = p2, and p′1 + p′3 = p1, P ′
n of

the eq. (10) is equal to Pn of the eq. (9). Therefore, if the
output probability distribution of S1 and S3 are the same,
the two models in Figure 2 are equivalent. This means
that if we use these parameters for the initial values, the
likelihood function of the model will be the same after
dividing the state and estimating the parameters. In this
procedure, it is clear that a sort of hierarchy is constructed
among the models.
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Figure 3: Initial values of the parameters

Exiting this Procedure
AIC which was given in Section 2 is used to evaluate

the model, and if AIC is not reduced by adding a new
state, we stop adding a state.

The procedure of increasing the states is as following.

1. Define the state to be divided.

2. Add a new state and set the initial values for the
new parameters.

3. Estimate the parameters by B-W Algorithm.

4. Calculate AIC, and if the model is better than the
last time, go to 1, otherwise quit.

3.2 Adding New Transitions between The

States

After increasing the states, there is another problem that
where to define the transitions. As we did on the states,
we think about increasing the transitions one by one.

It is different from increasing the states that we cannot
make the equivalent models when we put a new transition.
This means that when we put a new transition, there are
the risk of making the model worse. And there are no
way except trying B-W algorithm to know if it made the
model better.

Because it takes time to evaluate each possible transi-
tion by adding and estimating the parameters, we try to
predict the increase of the likelihood function. For predic-
tion, it seems better to use the increase of the one step of
B-W algorithm, but it also costs enormous time because
the number of possible transitions are large. Thus we use
the inner product of the differences of one step of the B-W
algorithm (θ̂−θ) and the derivative ∂ log P (y|θ)/∂θ. This
value can be calculated for all possible transitions by just
one step of B-W algorithm. The detail of the calculation
is shown in the following.
Increase of the transition probability

First of all, B-W algorithm for {aij} is

âij =
aij

∂ log P (y|θ)
∂aij∑

j

aij
∂ log P (y|θ)

∂aij

. (11)

By the eq. (11), it is clear that if aij is 0, aij does
not change by B-W algorithm. Thus the structure of the
HMM is not changed by B-W algorithm. When we try to
put a new transition, first we set the value of it a little
value δ and test âij .

âij =
aij

∂ log P (y|θ)
∂aij∑

j:j �=k

aij
∂ log P (y|θ)

∂aij
+ δ

∂ log P (y|θ)
∂aik

, j �= k

(12)

âik =
δ
∂ log P (y|θ)

∂aik∑
j:j �=k

aij
∂ log P (y|θ)

∂aij
+ δ

∂ log P (y|θ)
∂aik

(13)

The each of ∂ log P (y|θ)/∂aik is finite value. If δ is
very little value, the eqs. (12) and (13), the term of δ
in their denominator can be neglected. Thus under this
condition, the aij (j �= k) make almost no changes. With
the following equation,

∂ log P (y|θ)
∂aij

∣∣∣∣
θ∗

=
∂ log P (y|θ)

∂aij′

∣∣∣∣
θ∗

, for ∀ j′ s.t. aij′ �= 0

(14)



and
∑

j aij = 1, increase of a new transition aik is

âik − aik =
δ
∂ log P (y|θ)

∂aik∑
j:j �=k

aij
∂ log P (y|θ)

∂aij
+ δ

∂ log P (y|θ)
∂aik

− δ

� δ




∂ log P (y|θ)
∂aik

∂ log P (y|θ)
∂aij

− 1


 , j �= k ∧ aij �= 0.

(15)

The {πi}, {bi(k)} do not change their values if δ is very
small. Therefore, we do not have to know the differences
of the all parameters but of aik and the value can be esti-
mated from the eq. (15). If âik − aik is positive, we think
that it means that we should put the transition.
Increase of the likelihood function

On the other hand, what will the increase of the like-
lihood function be? In this algorithm, the inner product
of (θ̂ − θ) and ∂ log P (y|θ)/∂θ is used to estimate the in-
crease. Taking it into account that aij , (j �= k), {bi(k)},
and {πi} do not change their values, it is clear that the
inner product is equal to the product of (âik − aik) and
∂ log P (y|θ)/∂aij.

∂ log P (y|θ)/∂aij is easily obtained from B-W algo-
rithm

∂ log P (y|θ)
∂aij

=

T−1∑
t=1

αi(t)bj(yt+1)βj(t + 1)

∑
i

αi(T )
. (16)

Thus the increase of the log likelihood function is

∆ij log P (y|θ) ≡ (θ̂ − θ)
∂ log P (y|θ)

∂θ

� δ

[
∂ log P (y|θ)

∂aik

/
∂ log P (y|θ)

∂aij
− 1

]

×

T−1∑
t=1

αi(t)bk(yt+1)βk(t + 1)

∑
i

αi(T )
. (17)

After calculating {∆ij log P (y|θ)} for all possible tran-
sitions, we decide to put the one which gives the largest
value. In this procedure, only one step of B-W algorithm
is enough for calculating all {∆ij log P (y|θ)}.

Setting the probability of the new transition some
small value, execute B-W algorithm and construct the new
model. As in the last subsection, stop this procedure by
evaluating each model by AIC and select the model which
minimizes AIC.

4 Experiments and Results

4.1 Artificial Data

Before using acoustic data, we did an experiment with
artificial data. The sources of the sequential data are gen-
erated by 5 HMMs. The task is to tell the model by which
each datum was generated. The number of the states or
the transitions of HMMs and also the output probability
distributions are different. The source models are shown
in Figure 4. There are 6 symbols and the probability dis-
tributions of the states are discrete.
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Figure 4: HMM for the probabilistic sources

The process of the experiment is as following.

• Let each model generate 2000 of sequential data.
1000 for training, and 1000 for recognition.

• Construct HMM for each category using the algo-
rithm.

• Recognize the data according to the Bayes theory
where the Mi which maximized P (y|Mi) is the an-
swer.

Result
The models which was constructed through the pro-

posed algorithm are shown in Figure 5. Some of them
reflect the structures of the source models but not all.

For comparison, the same recognition experiment with
conventional method using the HMMs which have 3, 5,
and 7 states are shown in the Table 1.

Figure 6 shows the log likelihood for Category 3. From
this, the model constructed by the algorithm is good for
both of the data for training and recognition.

Table 1: Recognition Accuracy
Sources 3 states 5 states 7 states Algorithm
92.56% 84.92% 90.22% 90.68% 91.94%
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Figure 5: Results of the algorithm
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4.2 Acoustic Data

In this section, the experiment on phone recognition with
this algorithm is shown.

Task Recognition of 5 phones (/m/ ,/s/ ,/t/ ,/k/ ,/d/)
whose successive phone is /e/.

The Acoustic Data Speaker (MAU) in the Speech
Database of ATR [6] and the phones are cut accord-
ing to the labels [7].

Data for Vector Quantize 351 word of the task
code B,NA,NB,SY,and F in the Speech
Database of ATR.

Training data Odd numbers of 5240 words.
Data for recognition Even numbers of 5240

words.

Signal Processing Sampling 20kHz, 16bit, pre-
emphasized with 1 − 0.97z−1, Hamming Window
with the width of 20msec applied every 5msec.

Definitions of Symbol Execute VQ in [8] using vec-
tors of 32 dimension which consists of logpow, mel-
cep(15), ∆ logpow, ∆ mel-cep(15). And define 256
symbols.

Table 2: The HMMs constructed with the algorithm
phone(data) m(72) k(107) t(66) s(75) d(28)

States 11 20 20 13 9
Transitions 32 71 64 40 27

Results are shown in Table 3. For comparison, the
results with conventional approach such that the structure
of HMMs are fixed. In the table, the number of their
states and error rates for data of training and recognition
are shown. In Figure 7, the model for /d/ which was
constructed through the algorithm is shown.

Table 3: Error rates
(The upper row are the results of the recognition data

The second row are the results of the training data )

3 5 10 15 20 Algorithm
10.3% 9.2% 8.0% 11.2% 14.4% 8.3%
(3.7%) (2.0%) (2.3%) (1.4%) (1.7%) (2.0%)

0 1 27 F

Model for /d/

4 56 3

0.29

0.03

0.25

0.31

0.12

0.23

0.16
0.62

0.58

0.42

0.65

0.32
0.03

0.69

0.24
0.02

0.05

0.68

0.32

0.83

0.01

0.02
0.12

0.01

0.48

0.43
0.10

Figure 7: Constructed model for /d/

In Table 3, the models constructed through the algo-
rithm performs like the fixed model which have 10 states.
Though when we look at the log likelihood function, there
are difference between them (Figure 8).

5 Discussion

5.1 The Results with The Algorithm

Figure 8 shows that the model with 15 states marked the
best value for the training data and the model with the
Algorithm is just the next. On the other hand, for the
data of recognition, the model with the algorithm is the
best.

In general, we can represent the training data more
precisely with more parameters. But it is not the case with
the data for recognition. By using AIC we can avoid the
“over-learning” and construct good models. As is often
the case with using some statistical approach, the number
of training data must be large for this approach.
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5.2 Likelihood and Recognition

With these experiments, it is shown that by searching the
model which maximize the information criterion, we can
have the model which represent the data better than the
structures of the models are fixed. It seems that by using
the constructed models, we can expect the recognition ac-
curacy to be improved. Though what is shown in Table
3, the result of the constructed models is just similar to
the models whose states are fixed to 10. Of course, the
constructed models represents the data better than them
as shown in Figure 8. The reason for this is that in these
experiments, the model which gives the best value is the
answer. Each model only has to output better value than
other models. To represent the data precisely for such
recognition experiments.

We have to note that this does not mean that model
search is useless. What we have to consider when we con-
struct the model is to represent the data precisely. Then
what should we do to improve the recognition accuracy.
Probably the things left for us to do is the classification
of the data. If the data were categorized precisely, the
recognition accuracy would be improved. This problem
is equivalent to how to find the good phone units and is
taken up in many speech recognition systems. For exam-
ple, SPHINX system [2] used triphones (combinations of
48 basic phones) to make good phone units and defined
1076 phones. In SSS [3], they construct HM-Net from sim-
ple model which has only one state and treat the model
selection and the classification at once. In this approach,
by dividing the net into the contextual domain direction,
they treat the problem.

The proposed algorithm is to construct a model for
a given category. Therefore the classification must have
done in advance. The problem of finding the good phone
units is now under the consideration. As AIC is used in
the model selection, the author are searching some good
criterion for the classification. And then the recognition
accuracy will be improved.

Besides the problem of the phone units, what the au-

thor is considering is to change the output probability
functions of the HMMs. In the field of the automatic
speech recognition, multi-dimensional Gauss distributions
are widely used for the output probability distributions of
the HMMs. With this we do not have to execute vector
quantization. Now, the author is preparing for using this
kind of HMMs for the experiments.

6 Conclusion

Through the experiments, the author shows that the
model search approach is effective to construct the model
which represent the data well. This means that when we
implement this on some speech recognition system, the
system can generate the efficient phone models by itself.

In the algorithm, the author used a theoretically de-
rived criterion to determine the structure of the model
instead of the heuristic knowledge. This will give some
improvements in speech recognition systems.
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